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a b s t r a c t

Most existing variable selection methods for multivariate linear models focus only on
predictor selection. In this article, we propose a two-step (double group lasso step and
sparse canonical correlation step) method to conduct variable selection for predictors and
responses simultaneously.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Ordinary least squares estimation (OLS) is themost popularmethod for estimating the parameters formultivariate linear
regression, but it has many drawbacks. First, it ignores the relationships among the responses. Second, OLS is unbiased
but its variance may not be the smallest. Third, OLS is generally not sparse. Many improved penalized methods have been
proposed to overcome the drawbacks of OLS. Applying a penalty to each row of the coefficient matrix can conduct predictor
selection, such as simultaneous variable selection methods (SVS) (e.g., L∞-SVS (Turlach et al., 2005) and L2-SVS (Simila and
Tikka, 2007)), RemMap (Peng et al., 2010), and SPLS (Chun and Keles, 2010). Low rank estimation is also a very popular
approach. Thus, Yuan et al. (2007) proposed a rank reduction estimation method and Chen and Huang (2012) proposed a
sparse reduced-rank method, which can guarantee the sparseness and rank reduction for the estimates.

However, most aforementioned methods only considered predictor selection. In many real data analysis (e.g., eQTL Sun
et al., 2010), predictors and responses are both high dimensional. It is necessary to select important responses before further
analysis. Su et al. (2016) proposed a sparse envelope model for response selection only. Hence, it is meaningful to develop
a method for the simultaneous selection of both predictors and responses. An et al. (2013) proposed a sparse CCA method
for selecting predictors and responses for multivariate linear models in large sample scenario. We here propose a two-step
method for simultaneously selecting predictors and responses in high-dimensional scenario.

The remainder of the article is organized as follows. In Section 2, we describe our methodology. Section 3 presents
simulation studies.
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2. Methodology

2.1. Notations and model

Let (X⊤

i , Y⊤

i )⊤ be the ith observation (1 ≤ i ≤ n), Xi = (Xi1, . . . , Xip)
⊤

∈ Rp and Yi = (Yi1, . . . , Yiq)
⊤

∈ Rq. Assume that
(X⊤

i , Y⊤

i )⊤ with 1 ≤ i ≤ n are mutually independent with zero mean. We assume that

Yi = B⊤Xi + εi, (1)

where B = (bkj) ∈ Rp×q, and εi ∈ Rq is random noise, which is independent of Xi. Let bk. = (bk1, . . . , bkq)⊤ be the kth row
of B, and the jth column of B is denoted by b.j = (b1j, . . . , bpj)⊤. The true values of B, bk., b.j are denoted by B0, b0k., b

0
.j.

Obviously, only the predictors with nonzero ∥b0k.∥ are relevant to Yi, where ∥ · ∥ denotes the L2 norm for a vector.
Hence we define the predictor true model (PTM) as MT = {1 ≤ k ≤ p : ∥b0k.∥ > 0}. For the response, Yij is marginally
independent of the predictor Xi if and only if the corresponding b0.j is zero. Hence we define the response related model
(RRM) as NR = {1 ≤ j ≤ q : ∥b0.j∥ > 0}. If MT , NR are known, model (1) can be simplified as

Yi(NR) = B⊤

(MT ,NR)Xi(MT ) + εi(NR), (2)

where Yi(NR) is the subvector of Yi corresponding to the indices NR, and Xi(MT ), εi(NR) are both defined similarly. B(MT ,NR) is
the submatrix of B corresponding to the row indices MT and the column indices NR.

If Yi(NR) is still high dimensional, it is necessary to further reduce the elements of the responses considered in (2). Let N
be an arbitrary subset of NR, and denote NR \ N by N c . We call N a sufficient response model (SRM) if Yi(N c ) and Xi(MT )

are mutually independent conditioned on Yi(N ). Obviously NR is an SRM. We define the response true model (RTM) NT as
the intersection of all SRMs. Under certain regularity conditions, RTM is also an SRM and the smallest. It is sufficient to only
consider the regression relationship between Xi(MT ) and Yi(NT ) because all the information about Yi(N c

T ) contained in Xi(MT )

is contained in Yi(NT ). It is worthy to mention that our definition of NT is different from that given by An et al. (2013). NT
was defined on Yi by An et al. (2013), whereas we first discard the elements of Yi that are independent of Xi, and then define
NT on Yi(NR). This is because an element of Yi is independent of Xi, whereas it may be dependent on Xi given other elements
of Yi. The following example illustrates this characteristic: Yi1 = εi1, Yi2 = Xi1 + Yi1 + εi2. Obviously, it is sufficient to only
consider the relationships between Yi2 and Xi in this example. However, because Yi1 and Xi are dependent conditioned on
Yi2, then the final RTM will include Yi1 if we do not first discard Yi1 which is independent of Xi.

Su et al. (2016) only tried to identify the active responses that contribute to the material part. Our objective is to identify
MT , NR and NT . After obtaining them, it suffices to only study the relationships between Xi(MT ) and Yi(NT ) in order to study
the relationship between Xi and Yi.

2.2. Estimating MT and NR

Estimating MT and NR is equivalent to identifying the sparse structure of the coefficient matrix B. Let Y =

(Y1, . . . , Yn)
⊤, X = (X1, . . . , Xn)

⊤. The traditional least squares estimation solves B̂LS
= argminB ∥Y − XB∥2

F , where ∥ · ∥F

denotes the Frobenius norm of amatrix. However B̂LS is generally not sparse, so it is impossible to estimateMT andNR based
on B̂LS . Thus, we propose a sparse estimation method called double group lasso to identify the sparse structure of B, which
solves the optimization problem

BGL
(λ1,λ2)

= argmin
B

1
2n

∥Y − XB∥2
F + λ1

q
j=1

∥b.j∥ + λ2

p
k=1

∥bk.∥, (3)

where the penalty terms λ1
q

j=1 ∥b.j∥ and λ2
p

k=1 ∥bk.∥ shrink columns and rows of B toward zero respectively.

2.3. ADMM algorithm for double group lasso

An alternating directions method of multipliers (ADMM) algorithm is proposed to solve the problem (3). One can refer
to Boyd et al. (2011) for more details about ADMM. The problem (3) can be rewritten as

min
B,A

1
2n

∥Y − XB∥2
F + λ1

q
j=1

∥b.j∥ + λ2

p
k=1

∥ak.∥ subject to A = B, (4)

where ak. is the kth row of matrix A. The scaled augmented Lagrangian (Boyd et al., 2011) for (4) is L(B, A, C) = 1/(2n)∥Y −

XB∥2
F + λ1

q
j=1 ∥b.j∥ + λ2

p
k=1 ∥ak.∥ + ρ/2∥A − B + C∥

2
F − ρ/2∥C∥

2
F , where C is the scaled dual variable. The ADMM
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