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a b s t r a c t

Markov chain Monte Carlo (MCMC) algorithms are ubiquitous in probability theory in
general and in machine learning in particular. A Markov chain is devised so that its
stationary distribution is some probability distribution of interest. Then one samples from
the given distribution by running the Markov chain for a ‘‘long time’’ until it appears to
be stationary and then collects the sample. However these chains are often very complex
and there are no theoretical guarantees that stationarity is actually reached. In this paper
we study the Gibbs sampler of the posterior distribution of a very simple case of Latent
Dirichlet Allocation, an attractive Bayesianunsupervised learningmodel for text generation
and text classification. It turns out that in some situations, the mixing time of the Gibbs
sampler is exponential in the length of documents and so it is practically impossible to
properly sample from the posterior when documents are sufficiently long.

© 2017 Published by Elsevier B.V.

1. Introduction

Markov chain Monte Carlo (MCMC) is a powerful tool for sampling from a given probability distribution on a very large
state space, where direct sampling is difficult, in part because of the size of the state space and in part because of normalizing
constants that are difficult to compute.

In machine learning in particular, MCMC algorithms are extremely common for sampling from posterior distributions of
Bayesian probabilistic models. The posterior distribution given observed data is then difficult to sample from for the reasons
above. One then designs an (irreducible aperiodic) Markov chain whose stationary distribution is precisely the targeted
posterior. This is usually fairly easy since the posterior is usually easy to compute up to the normalizing constant (the
denominator in Bayes formula). One usually uses Gibbs sampling or the related Metropolis–Hastings algorithm.

Gibbs sampling in these situations can be described as follows. Our state space is a finite set of random variables
X = {Xa}a∈A, where Xa ∈ T for some measurable space T , so that X ∈ T A and the targeted distribution is a given probability
measure P on T A. In order to sample from P one starts a Markov chain on T A whose updates are given by first choosing an
index a ∈ A at random and then choosing a new value of Xa according to the conditional distribution of Xa given all Xb,
b ∈ A \ {a}. Under mild conditions, this chain converges in distribution to P. The Markov chain is then run for a ‘‘long time’’
and then a sample, hopefully approximately from P, is collected. A key question here is for how long the chain actually has
to be run, in order for the distribution after that time to be a good approximation of P. Since A is usually large, the number
of steps needed should at least be no more than polynomial in the size of A for Gibbs sampling to be feasible. In almost all
practical cases, the structure of the sample space and the probability measure P is so complex that is virtually impossible to
make a rigorous analysis of the mixing rate. However it may be possible to consider some very simplified special cases. In
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this paper, we will analyze a special case of Latent Dirichlet allocation, henceforth LDA for short, and demonstrate for such
a simple special case that mixing can indeed be a problem.

LDA is model used to classify documents according to their topics introduced by Blei et al. (2003). We have a large corpus
of documents and we want to determine for each word in each document which topic it comes from. Knowing this we can
also classify the documents according to the proportion of words of the different topics it contains. The setup in LDA is that
one has a fixed numberD of documents of lengthsNd a fixed set of topics t1, t2, . . . , ts and a fixed set ofwordsw1, w2, . . . , wv .
These are specified in advance. The number of topics is usually not large, whereas the number of words is. Next, for each
document d = 1, . . . ,D, amultinomial distribution θd = (θd(1), . . . , θd(s)) over topics is chosen according to a Dirichlet prior
with a known parameter α = (α1, . . . , αs). For each topic ti a multinomial distribution φi = (φi(1), . . . , φi(v)) according to
a Dirichlet prior with parameter β = (β1, . . . , βv) independently of each other and of the θd:s. Given these, the corpus is
then generated by for each position p = 1, . . . ,Nd in each document d picking a topic zd,p according to θd and then picking
the word at that position according to φzd,p , doing this independently for all positions. Note that the LDAmodel is a so called
‘‘bag of words’’ model, i.e. it is invariant under permutations within each document.

In this paper, we will consider the very simplified case with D = s = v = 2, N1 = N2 = m and α = β = (1, 1) and study
the mixing time asymptotics as m → ∞. To simplify the notation, denote the two topics by A and B and the two words by
1 and 2. Define nij as the number of occurrences of the word j in document i, i, j = 1, 2 and write ni. = ni1 + ni2 (which
by assumption equals m) and n.j = n1j + n2j and n.. =

∑
i,jnij = 2m. We consider the mixing time for Gibbs sampling of

the posterior in a seemingly typical case, namely that the number of 1:s in the first document is 3m/10 and in the second
document 6m/10. Our result is the following.

Theorem 1.1. Consider the case n11 = 3m/10 and n21 = 6m/10. Then there exists a λ > 0 such that for each 0 < κ < 3/4,

τmix(κ) > eλn.

Remark. The point of this paper is to demonstrate that the mixing time issue can be a real problem for Bayesian inference
in machine learning in general and not for LDA in particular. There are also other methods for estimation that seem to work
well for LDA, in particular variational inference, see Hoffman et al. (2013). Furthermore, experimental results seem to be
fairly well in line with what one would expect from a topic classification algorithm. There are various extensions of LDA. For
a model that seems to performwell, see Andrews and Vigliocco (2010), where jumps between topics follow aMarkov chain.
For an overview of probabilistic topic models, see Blei (2011).

Before moving on to the proof of Theorem 1.1, we formally introduce the concept of mixing time. Let {Xt}
∞

t=0 be a discrete
time Markov chain on the finite state space S and for s ∈ S, let Ps be the underlying probability measure under X0 = s.

Definition 1.2. Let µ and ν be two probability measures on S. The total variation distance between µ and ν is given by

∥µ − ν∥TV = max
A⊂S

(µ(A) − ν(A)) =
1
2

∑
s∈S

|µ(s) − ν(s)|.

Definition 1.3. For each κ ∈ (0, 1), the κ-mixing time of {Xt} is given by

τmix(κ) = max
s∈S

min{t : ∥Ps(Xt ∈ ·) − π∥TV ≤ κ}.

The essence of Theorem 1.1 is that even after an exponentially long time, the distribution of the state of the Gibbs sampler
is concentrated on a set whose probability mass according to the targeted posterior is at most 1/4.

2. Proof of Theorem 1.1

The following two combinatorial lemmas will be needed.

Lemma 2.1. Let X be a standard uniform random variable and 0 ≤ k ≤ n. Then

E[Xk(1 − X)n−k
] =

1
(n + 1)

( n
k

) .
Proof. First recall that for anym = 1, 2, . . . ,

E[Xm
] =

1
m + 1

.

Next observe that the result holds true for any nwith k = n. Wewant to prove that the claimed result holds for (n, k) = (p, r)
for some arbitrary 0 ≤ r ≤ p. We do this by induction. We may then assume that the result is true with (n, k) = (m, l) for
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