Strong existence and uniqueness to a class of nonlinear SPDEs driven by Gaussian colored noises

Jie Xiong ${ }^{\text {a }}$, Xu Yang ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Sci \& Tech., University of Macau, Macau, China
${ }^{\mathrm{b}}$ School of Mathematics and Information Science, North Minzu University, Yinchuan, China

ARTICLE INFO

Article history:

Received 15 February 2017
Accepted 17 May 2017
Available online 25 May 2017

MSC:

60H15
74H20

Keywords:

Stochastic partial differential equation
Existence
Uniqueness
Colored noise

A B S T R A C T

In this paper, we establish the strong existence and uniqueness to the following stochastic partial differential equation:

$$
u_{t}(x)=u_{0}(x)+\frac{1}{2} \int_{0}^{t} \Delta u_{s}(x) \mathrm{d} s+\int_{0}^{t} \int_{\mathbb{R}} g\left(u_{s}(x), \nabla u_{s}(x)\right) \mathrm{d} F(s, y)
$$

where $F(s, x)$ is a Gaussian noise on $\mathbb{R}_{+} \times \mathbb{R}$ that is white in time and colored in space. This gives an affirmative answer to the open problem in Gomez et al. (2013) for certain non-Lipschitz condition of g.
© 2017 Elsevier B.V. All rights reserved.

1. Introduction and main result

For $k \geq 1$ let \mathcal{X}_{k} be the Hilbert space consisting of all functions f so that $f^{(k)} \in L^{2}\left(\mathbb{R}, \mathrm{e}^{-|x|} \mathrm{d} x\right)$, where $f^{(k)}$ is the k th order derivative in the sense of generalized functions. In this paper we always assume that all random elements are defined on a filtered complete probability space $\left(\Omega, \mathscr{F},\left(\mathscr{F}_{t}\right)_{t \geq 0}, \mathbf{P}\right)$ satisfying the usual hypotheses. Our aim of this paper is to study the strong existence and uniqueness for the following \mathcal{X}_{1}-valued stochastic partial differential equation (SPDE):

$$
\begin{equation*}
u_{t}(x)=u_{0}(x)+\frac{1}{2} \int_{0}^{t} \Delta u_{s}(x) \mathrm{d} s+\int_{0}^{t} \int_{\mathbb{R}} g\left(u_{s}(x), \nabla u_{s}(x)\right) \mathrm{d} F(s, y), \tag{1.1}
\end{equation*}
$$

where ∇ and Δ denote the first and the second order spatial differential operators, respectively, $F(s, x)$ is a mean-zero Gaussian colored noise with the covariance function

$$
\mathbf{E}\{F(t, x) F(s, y)\}=\delta(t-s) \sigma(x, y)
$$

and σ is a nonnegative bounded function on $\mathbb{R} \times \mathbb{R}$.
The strong uniqueness to (1.1) was proved in Gomez et al. (2013) by transforming the SPDE into a backward doubly stochastic differential equation as $g(x, y)$ satisfies certain non-Lipschitz condition in x and Lipschitz condition in y. But the existence was left as an open problem. In this paper we give an affirmative answer to this problem for a certain case.

If $g(x, y)$ is independent of y, Mytnik et al. (2006) showed that (1.1) has a strong unique solution as g is Hölder continuous for certain range of index. For the case $g(x, y) \equiv|x|^{\gamma}$ and the Gaussian white noise F, Mytnik and Perkins (2011) proved that

[^0](1.1) has a strong unique solution as $\gamma>3 / 4$, Mueller et al. (2014) showed a non-uniqueness result as $1 / 2 \leq \gamma<3 / 4$ and Burdzy et al. (2010) gave a non-uniqueness result as $0<\gamma<1 / 2$. If $g(x, y) \equiv\left(|x|^{\beta} \wedge 1\right) y$, then the main result of this paper implies that (1.1) has a strong unique solution for all $\beta \geq 0$ (see Example 1.2 in the following), which is interesting.

Eq. (1.1) is a form SPDE, it can be understood in the following sense: for each $f \in \mathscr{S}(\mathbb{R})$, the Schwartz space of rapidly decreasing functions on \mathbb{R},

$$
\int_{\mathbb{R}} u_{t}(x) f(x) \mathrm{d} x=\int_{\mathbb{R}} u_{0}(x) f(x) \mathrm{d} x+\frac{1}{2} \int_{0}^{t} \mathrm{~d} s \int_{\mathbb{R}} u_{s}(x) f^{\prime \prime}(x) \mathrm{d} x+\int_{0}^{t} \int_{\mathbb{R}} g\left(u_{s}(x), \nabla u_{s}(x)\right) f(x) \mathrm{d} F(s, x) .
$$

Due to technical reason, we will obtain the existence of the solution under a condition which is different from that imposed in Gomez et al. (2013) for the uniqueness of the solution. Keeping in mind the motivating example ($\left.|x|^{\beta} \wedge 1\right) y$, we assume throughout this article that

$$
g(x, y)=\bar{g}(x, y)+\widetilde{g}(x) y
$$

For the convenience of the statements of the result, let us formulate the following conditions on \bar{g} and \tilde{g} :
(a) (Lipschitz condition) There are constants $K_{1}>0$ and $\alpha>0$ so that

$$
\left|\bar{g}\left(x_{1}, y_{1}\right)-\bar{g}\left(x_{2}, y_{2}\right)\right| \leq K_{1}\left|x_{1}-x_{2}\right|+\alpha\left|y_{1}-y_{2}\right|, \quad x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}
$$

(b) There is a constant $K_{2}>0$ so that $|\widetilde{g}(x)| \leq K_{2}$ for all $x \in \mathbb{R}$.

Theorem 1.1. Suppose that conditions (a, b) hold and $\|\sigma\|_{2, \infty}<\infty$ with

$$
\|\sigma\|_{k, \infty}:=\sum_{i, j \geq 0, i+j \leq k} \sup _{x, y}\left|\partial_{x^{i} y j}^{i+j} \sigma(x, y)\right|, \quad k \geq 0
$$

If $u_{0} \in \mathcal{X}_{1}$ and $2 \alpha^{2}\|\sigma\|_{2, \infty}<1$, then (1.1) has a strong unique \mathcal{X}_{1}-valued solution.
Example 1.2. If $g(x, y)=\left(|x|^{\beta} \wedge 1\right) y$ for $\beta \geq 0$ and $\|\sigma\|_{2, \infty}<\infty, \operatorname{SPDE}$ (1.1) has a strong unique solution. Note that the uniqueness was obtained in Gomez et al. (2013) for $\beta \in\left[\frac{1}{2}, 1\right]$ only.

2. Proof of Theorem 1.1

We define the Hilbert norm $\|\cdot\|$ for \mathcal{X}_{0} by

$$
\|f\|=\int_{\mathbb{R}}|f(x)|^{2} \mathrm{e}^{-|x|} \mathrm{d} x
$$

We denote the corresponding inner product by $\langle\cdot, \cdot\rangle$. Define $J(x)=\int_{\mathbb{R}} \mathrm{e}^{-|y|} \rho_{0}(x-y) d y$ with the mollifier ρ_{0} given by

$$
\rho_{0}(x)=C^{\prime} \exp \left(-1 /\left(1-x^{2}\right)\right) 1_{\{|x|<1\}}
$$

where C^{\prime} is a constant so that $\int_{\mathbb{R}} \rho_{0}(x) d x=1$. By (2.1) in Mitoma (1985), for each $n \geq 0$ there are constants $C_{n}^{\prime}, C_{n}^{\prime \prime}>0$ so that

$$
\begin{equation*}
C_{n}^{\prime \prime} e^{-|x|} \leq\left|J^{(n)}(x)\right| \leq C_{n}^{\prime} e^{-|x|}, \quad x \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\left|J^{(n)}(x)\right| \leq C_{n} J(x), \quad x \in \mathbb{R} \tag{2.2}
\end{equation*}
$$

for some constant $C_{n}>0$. We may and will replace $\mathrm{e}^{-|x|}$ by $J(x)$ in the definitions of space \mathcal{X}_{k} and the norm $\|\cdot\|$. In this section we always use C and $C(\varepsilon)$ to denote positive constants whose values might change from line to line and independent of the constant n and s. Let $\left(P_{t}\right)_{t \geq 0}$ denote the transition semigroup of a one-dimensional Brownian motion. For $t>0$ and $x \in \mathbb{R}$ write $p_{t}(x):=(2 \pi t)^{-\frac{1}{2}} \exp \left\{-x^{2} /(2 t)\right\}$. We will need the following lemma.

Lemma 2.1.

(i) Let

$$
K_{3}=\left|\int_{\mathbb{R}} e^{z} p_{1}(z) \mathrm{d} z\right|^{\frac{1}{2}}
$$

Then $\left\|P_{t} f\right\| \leq K_{3}^{t}\|f\|$ for each $f \in \mathcal{X}_{0}$ and $t \in[0,1]$. Moreover, there is a constant $K_{4}>0$ so that

$$
\left\|P_{t} f-P_{s} f\right\| \leq K_{4}\left\|f^{\prime}\right\| \sqrt{|t-s|}
$$

for $t, s \in[0,1]$ and $f \in \mathcal{X}_{1}$.

https://daneshyari.com/en/article/5129719

Download Persian Version:

https://daneshyari.com/article/5129719

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jiexiong@umac.mo (J. Xiong), xuyang@mail.bnu.edu.cn (X. Yang).

