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a b s t r a c t

A new class of disparities from the point of view of prediction problem is proposed for
minimum contrast estimation of spectral densities of stationary processes. We investigate
asymptotic properties of the minimum contrast estimators based on the new disparities
for stationary processes with both finite and infinite variance innovations. The relative
efficiency and the robustness against randomly missing observations are shown in our
numerical simulations.
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1. Introduction

Methods of fitting parametric models to linear time series have been investigated for a long time. One method for
parameter estimation is to minimize a certain disparity measure D(fθ , ĝn) between the spectral density fθ and some
nonparametric estimator ĝn of fθ . Two disparity measures, the location disparity and the scale disparity, have been mainly
considered so far. The location disparity D(fθ , ĝn) =

∫ π

−π
[Φ(fθ (ω))2 − 2Φ(fθ (ω))Φ(ĝn(ω))]dω with a bijective function Φ(·)

was proposed in Taniguchi (1981). The scale disparity D(fθ , ĝn) =
∫ π

−π
K (fθ (ω)/ĝn(ω))dω with a sufficiently smooth contrast

function K (·) was proposed in Taniguchi (1987). Both methods yield consistent parameter estimation.
In this paper, we propose a new consistent disparity as follows.

D(fθ , ĝn) =

∫ π

−π

a(θ )f α
θ (ω)ĝn(ω)dω, (1)

where α ∈ R \ {0} and a(θ ) is

a(θ ) =

⎧⎨⎩C ·

(∫ π

−π

f α+1
θ (ω)dω

)−
α

α+1
, if α ̸= −1,

C, if α = −1.

Here, C is a nonzero generic constant. The disparity (1) originates from minimizing prediction error in Lp of prediction
problem of X0 based on {Xt; t ∈ Z\{0}} for stationary processes. Our new disparity is neither included in the class of location
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disparities nor scale disparities. The formof the disparity is similar to the power divergenceproposed in Renyi (1961), Csiszár
(1975) and Fujisawa and Eguchi (2008) for density estimation of independent and identically distributed random variables.
As pointed out in Fujisawa and Eguchi (2008), the disparity has the robustness to outliers and contamination under the
heavy contaminatedmodels. Under regularity conditions for parameter estimation of stationary processes, we show that the
estimator based on the disparity (1) has properties of consistency and asymptotic normality. The finite sample properties
of the estimator are investigated in our numerical simulations. To investigate the robustness under contaminated models
in simulations, the observation is supposed to be randomly missing from a stationary time series. It is shown that the mean
squared error for α < −1 is smaller than that for α = −1 in both cases when i.i.d. innovations are Cauchy and Gaussian
distributed although the case α = −1 is theoretically the most efficient if we have full observations.

The paper is organized as follows. In Section 2, we derive the disparity (1) from the prediction problem in Lp. Asymptotic
properties of the proposed estimator for stationary processes with both finite and infinite variance innovations are
investigated in Section 3. In Section 4, we investigate our new disparity (1) in numerical simulations. Especially, we apply
our new disparity (1) to the irregularly observed stationary processes as an application for robust parameter estimation.

2. A new class of disparities from prediction problem

In this section, we derive our disparity (1) from the prediction problem of stationary processes in Lp. Let Z denote the set
of all integers. Suppose {X(t), t ∈ Z} is a real-valued stationary process with spectral density g(ω). Let Z0 = Z \ {0} and M
denote the closed linear manifold generated by {eijω, j ∈ Z0}. The linear prediction of X0 based on {Xt , t ∈ Z0} in Lp is the
problem of minimizing the prediction error in Lp on M for 1 < p < ∞, that is,

inf
φ∈M

∫ π

−π

|1 − φ(ω)|pg(ω)dω. (2)

For example, interpolation problem for time point 0 is formulated by (2) with p = 2 (cf. Grenander and Rosenblatt, 1957;
Rosenblatt, 2000). As shown in Miamee and Pourahmadi (1988), the best predictor φ(ω) is given by

φ(ω) = 1 −

( 1
2π

∫ π

−π

gα+1(ω)dω
)−1

gα+1(ω),

where α = −p/(p−1). In practice, it is usually difficult to know the true density g(ω) a priori. Suppose we fit a parametrized
density fθ (ω)with d-dimensional parameter θ ∈ Θ ⊂ Rd to the true spectral density for the prediction problem. Then, noting
that p = α/(α + 1), the error in Lp of the prediction by the best predictor φ(ω) for fθ (ω) is∫ π

−π

⏐⏐⏐( 1
2π

∫ π

−π

f α+1
θ (ω)dω

)−1
f α+1
θ (ω)

⏐⏐⏐pg(ω)dω

=

( 1
2π

∫ π

−π

f α+1
θ (ω)dω

)−
α

α+1
(∫ π

−π

f α
θ (ω)g(ω)dω

)
. (3)

Motivated by (3), we consider an estimation procedure to estimate the parameter θ by the following disparity (α ∈ R \ {0}),

D(fθ , g) =

∫ π

−π

a(θ )f α
θ (ω)g(ω)dω, (4)

where a(θ ) is

a(θ ) =

⎧⎨⎩C ·

(∫ π

−π

f α+1
θ (ω)dω

)−
α

α+1
, if α ̸= −1,

C, if α = −1,

where C is a nonzero generic constant. This notation is used hereafter.We call (4) the exotic disparity. Note that when α = 0,
(4) do not give a disparity between fθ and g , and further, (2) cannot be regarded as the prediction problem since p = 0.

Next, let us investigate the basic property of the exotic disparity. This disparity is not included in the class of either
location disparities or scale disparities since the powers of parametrized spectral density and true density are not same
in the exotic disparity (4). However, the definition of the disparity can be motivated by the following two examples:
(i) the Whittle disparity when α = −1; (ii) the estimation procedure minimizing the interpolation error when α = −2. The
comparison of the efficiency between these two methods are considered in Suto et al. (2016). In addition to the efficiency,
the robustness against randomlymissing observations by the exotic disparity (4) is also considered in Section 4 in this paper.

In the following, we impose Assumption 1.

Assumption 1.

(i) The parameter space Θ is a compact subset of Rd.
(ii) If θ1 ̸= θ2, then fθ1 ̸= fθ2 on a set of positive Lebesgue measure.
(iii) The parametric spectral density fθ (ω) is three times continuously differentiable with respect to θ and the second

derivative ∂2

∂θ∂θT
fθ (ω) is continuous in ω.
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