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a b s t r a c t

Computing an inverse of a covariance matrix is a common computational component in
Statistics. For example, Gaussian likelihood function includes the inverse of a covariance
matrix. For the computation of the inverse of a spatial covariance matrix, numerically un-
stable results can arise when the observation locations are getting denser. In this paper, we
investigatewhen computational instability in calculating the inverse of a spatial covariance
matrixmakesmaximum likelihood estimator unreasonable for aMatérn covariancemodel.
Also, some possible approaches to relax such computational instability are discussed.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Computation of the inverse of a covariance matrix is required very often in Statistics. For example, Gaussian likelihood
function includes the inverse of a covariancematrix. Spatial prediction called Kriging requires computation of the inverse of a
spatial covariance matrix. For a (stationary) spatial covariance matrix which depends on the distance between neighboring
observations, computation of an inverse of a spatial covariance matrix can be unstable when the observed locations are
dense. Such instability could result in a negative eigenvalue or numerical singularity for a spatial covariance matrix.

In numerical analysis or computer science, the condition number of a matrix is used as a measure of numerical stability
for a matrix. For a symmetric matrix M , the L2-norm condition number is defined by κ2(M) =

maximum eigenvalue of M
minimum eigenvalue of M . The

matrix is numerically invertible if its condition number is finite. It is ill-conditioned if its condition number is finite but high
(greater than 1012 in Andrianakis and Challenor, 2012 or 103 in Won et al., 2014) andwell-conditioned if its condition number
is moderate. In the LAPACK, a standard software library for numerical linear algebra used in MATLAB (The MathWorks), a
reciprocal condition number using L1-norm is used to determine whether a matrix is numerically singular. The L1-norm
condition number, κ1(M), of a matrix M is defined as κ1(M) = ∥M∥1∥M−1

∥1. Specifically, if (κ1(M))−1 < 10 ε, where
ε (= 2−52

≈ 2.22 × 10−16) is the floating-point relative accuracy, the matrix M is numerically singular. The same accuracy
is used in R and GSTAT computer code (Peng and Wu, 2014). The condition number depends on the matrix norm used, but
all condition numbers are equivalent in the sense that one can be bounded below/above by a constant multiple of the other
(e.g. Horn and Johnson, 1990).

In this paper, we investigate what components or situations bring computational instability in calculating the inverse of a
spatial covariancematrix, in particular, for aMatérn covariancemodel and how computational instability affects amaximum
likelihood estimator (MLE) for spatial data. Such a numerical problem could also happen when the spatial prediction called
Kriging is applied. The results regarding spatial prediction are not presented in the paper due to the limited space.
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Table 1
The condition number (κ2), bias (Bias) and standard deviation (STD) of σ̂ 2

α∗
α2ν

∗
, where σ̂ 2

α∗
given in (1) from 20 datasets at various δ and ν. The observation

domain is [0,1] and α∗ is set to 0.1.

δ 0.002 0.001 0.0005

ν κ2 Bias STD κ2 Bias STD κ2 Bias STD

0.3 1.09E+05 0.00 0.16 3.29E+05 −0.03 0.13 9.97E+05 −0.02 0.10
0.5 4.85E+06 −0.04 0.19 1.94E+07 −0.01 0.15 7.74E+07 0.02 0.09
1.2 2.56E+12 −0.19 0.27 2.70E+13 −0.16 0.22 2.85E+14 −0.07 0.10
1.5 7.55E+14 −0.21 0.32 2.85E+16 0.15 0.27 2.78E+19 −159.35 283.85

All numerical study was conducted by MATLAB 2014 with the double floating-point precision on Intel(R) Core(TM) i7-
3770@3.40 GHz and 16.0 GB memory. The paper is organized as follows. In Section 2, we present how the inverse of a
covariance matrix with a large condition number leads to unstable computation on estimation. In Section 3, we discuss
factors that influence the condition number of a spatial covariance matrix under the Matérn covariance model. Simulation
study is provided to support our findings. Some approaches used to reduce such computation instability are discussed in
Section 4. Section 5 summarizes our work.

2. Computational instability on MLE for spatial data

We first investigate impact of a large condition number of a spatial covariance matrix on estimation via numerical study.
Also, we investigate when a spatial covariance matrix has a large condition number. We consider a mean zero Gaussian
random field with a Matérn covariance model, which is defined as K (|s|) =

σ2 21−ν

Γ (ν) (α|s|)νKν(α|s|), where s ∈ Rd, Kν is a
modified Bessel function of the second kind with order ν, which is called a smoothing parameter, α is the range parameter
and | · | is the d-dimensional Euclidean norm.

Suppose that the data are observed at {s1, . . . , sn} so that the data vector is Z = (Z(s1), . . . , Z(sn))t , where t is the
transpose of a matrix. When ν is known, for any given α∗ > 0, which is not necessarily the true value, the MLE of the
variance parameter, σ 2, can be written as

σ̂ 2
α∗

= Z tΣ−1
α∗,νZ/n, (1)

whereΣα∗,ν is the covariancematrix constructed by theMatérn covariancemodelwith the parametersσ 2
= 1,α = α∗ and ν.

The asymptotic properties of σ̂ 2
α∗

can be found in the literature under infill asymptotics. Infill asymptotics or fixed domain
asymptotics is the asymptotic framework when the observation domain is bounded while the number of data points within
the observation domain is increasing (see e.g. Stein, 1999; Zhang, 2004; Kaufman et al., 2008; Du et al., 2009). The estimator
σ̂ 2

α∗
α2ν

∗
of the microergodic parameter, σ 2α2ν , is asymptotically consistent for any given α∗ > 0 but obvious bias could be

observed for the finite samples (e.g. Kaufman and Shaby, 2013) while one cannot estimate σ 2, α and ν, separately.
To see how numerical instability affects estimation of spatial data, numerical investigation is done first. We generated

the data on a grid within [0, 1] with the parameter values (σ 2, α) = (2, 1.5) and ν ∈ {0.3, 0.5, 1.2, 1.5}. 20 datasets were
generated for each parameter setting under different grid sizes, δ.We then estimateσ 2α2ν for each dataset. Bias and standard
deviation were obtained.

Table 1 shows the condition number (κ2), the bias (Bias) and standard deviation (STD) of the estimates of σ 2α2ν for
various ν values when α∗ = 0.1. When ν = 0.3, 0.5 and 1.2, σ̂ 2

α∗
α2ν

∗
performs well. However, when ν is 1.5, we observe

a larger bias and it increases as the grid size (δ) is getting smaller (i.e. the sample size is getting larger). Some numerically
negative eigenvalues for the covariance matrix were found which contradicts to the positive definiteness of the covariance
matrix. These results on estimation are likely due to the numerical instability of a corresponding covariancematrix as we see
that κ2 is large where bias is large. Particularly, bad estimation results or negative eigenvalues happen when the condition
number calculated by MATLAB function ‘‘cond’’ is greater than 1017. This happens when ν gets larger or distance between
neighboring observations, δ, becomes smaller. These findings indicate that numerical instability depends on several factors
such as covariance parameters (σ 2, α, ν) and the grid size (δ). Thus, we further investigate how these components affect the
condition number of the spatial covariance matrix, in turn, the estimation.

The difficulty to study the condition number of a Matérn covariance matrix is that a Matérn covariance function involves
the modified Bessel function of the second kind which cannot be expressed in a closed form except when ν is half
integer (Gelfand et al., 2012). In Section 3, we show that the condition number of a Matérn covariance matrix depends
on δ, ν and α by studying some theoretical bounds of the extreme values of the spectral density and some simulation study.

3. Condition number of a Matérn covariance matrix

For simplicity, we assume that a stationary Gaussian random field Z(s) on Rd with a Matérn covariance function is
observed on a regular grid. The corresponding spectral density is

f (λ) =
Γ (ν + d/2)α2ν

πd/2Γ (ν)
σ 2

(α2 + |λ|
2)(ν+d/2)

for λ ∈ Rd. (2)
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