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a b s t r a c t

We find general conditions for asymptotic normality of two types of one-stepM-estimators
based on independent not necessarily identically distributed observations. As an applica-
tion, we consider some examples of one-step approximation of quasi-likelihood estimators
in nonlinear regression.
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1. Introduction

Let X1, X2, . . . be independent observations that need not be identically distributed. We assume that their distributions
depend on an unknownparameter θ ∈ Θ ⊂ Rm. As one of the generalmethods to estimate parameter θ is usually considered
M-estimation. By anM-estimator we mean a statistic θ̃n such that θ̃n is a solution to the equation

n∑
i=1

Mi(t, Xi) = 0 (1)

with probability tending to 1 as n → ∞, whereMi(t, x), i = 1, . . . , n, are some known vector functions, with EMi(θ, Xi) = 0
for all i. By a vector we always mean a column vector of heightm. In what follows, the true parameter will be denoted by the
symbol θ . Dependence on θ of the expectation E and probability Pwill not be indicated.

As is well known (see, e.g., Bai and Wu, 1997), θ̃n is asymptotically normal, i.e.,

An,θ
(̃
θn − θ

) d
−→ Nm(0, I) (2)

under suitable regularity conditions, where An,θ denotes some (m × m)-matrix which will be defined later; by Nm(0, I) we
denote a random vector having them-dimensional standard normal law. Unless explicitly stated otherwise, we alwaysmean
the limits as n → ∞.

On the other hand, it may be difficult to find a consistent solution θ̃n to Eq. (1) and even its approximation with the help
of iterative methods, especially if there is a few solutions to (1) (see, e.g., Small and Yang, 1999; Small and Wang, 2003).
The situation becomes much easier if we know an initial estimator θ∗

n of the parameter θ which is consistent with a suitable
rate of convergence. Put

θ∗∗

n = θ∗

n −

(
n∑

i=1

Di(θ∗

n , Xi)

)−1 n∑
i=1

Mi(θ∗

n , Xi), (3)
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whereDi(t, Xi) is the nondegenerate Jacobimatrix of the vectorMi(t, Xi). The so-called one-stepM-estimator θ∗∗
n is a one-step

approximation of a solution to (1) obtained by Newton’s iteration method if t = θ∗
n is the initial point. We prove that, under

a wide spectrum of constraints on the exactness of θ∗
n , this estimator satisfies the limit relation

An,θ
(
θ∗∗

n − θ
) d

−→ Nm(0, I). (4)

So, the explicit estimator θ∗∗
n has the same asymptotic exactness as the M-estimator θ̃n satisfying (2). Moreover, the limit

relation (4) may occur while (2) is not (see Remark 3).
Seemingly, the idea of one-step estimation goes back to R. Fisher. He considered an approximation of consistentmaximum

likelihood estimators based on a homogeneous sample. As regards one-step M-estimators of the form (3), they were
particularly studied in the case of independent identically distributed observations and univariate parameters (see, e.g., the
references in Linke, 2016). Our interest in one-step estimators (3) is mainly connectedwith the problem of approximation of
least squares,maximum likelihood, and quasi-likelihood estimators for nonlinear regression problems. Notice that existence
of several roots of Eq. (1) is rather typical for nonlinear regression models (see, e.g., Small and Yang, 1999; Small andWang,
2003; see also Fig. 1). One of the basic elements of the one-step estimation methodology is the existence of sufficiently
precise initial estimators. In Linke and Borisov (2017), an approachwas suggested to construct such estimators for nonlinear
regression models.

The idea of one-step estimation is widespread in the case when estimation is connected with finding the roots of some
equations arising in various special statistical problems (for example, see Bickel, 1975; Simpson et al., 1992; Müller, 1994;
Field and Wiens, 1994; Fan and Chen, 1999; Fan and Jiang, 2000; Welsh and Ronchetti, 2002; Bergesio and Yohai, 2011;
Jurečková, 2012; Jurečková et al., 2012; Fan et al., 2014; and the references there).

The author thanks the referee for helpful comments.

2. Main results

We assume below that a matrix norm ∥ · ∥ is coordinated with a vector norm |·| and it is semimultiplicative, i.e., |Ax| ≤

∥A∥|x| and ∥AB∥ ≤ ∥A∥∥B∥ for any matrices A, B, and every vector x. By convergence for vectors and matrices we mean
the coordinate-wise convergence or, which is equivalent, convergence with respect to the norms chosen. By the expectation
of a vector or a matrix, we mean the corresponding coordinate-wise expectation.

We will need the following conditions.
(A1) Let X1, X2, . . . , Xn be independent observations with values in a measurable space X . The distributions L1,θ ,

L2,θ . . . ,Ln,θ of these observations depend on an unknown parameter θ ∈ Θ ⊂ Rm, where Θ is an open set. In general,
these distributions may depend on n and a secondary parameter ν of an arbitrary nature (we will not indicate dependence
on ν).

(A2) For every i, we definem-dimensional vectorsMi(t, Xi) and (m×m)-matrices Di(t, Xi) on Θ (whichmay depend on n)
such that, for each interval (t1, t2) ⊂ Θ , the equality

Mi(t2, Xi) − Mi(t1, Xi) = (t2 − t1)
∫ 1

0
Di(t1 + v(t2 − t1), Xi)dv

holdswith probability 1, themathematical expectation of each component ofDi(θ, Xi) is finite, and the relationsEMi(θ, Xi) =

0 and E|Mi(θ, Xi)|2 < ∞ are valid.
(A3) For all sufficiently large n, the matrix Jn,θ :=

∑n
i=1EDi(θ, Xi) is nondegenerate and the matrix In,θ :=

∑n
i=1EMi(θ, Xi)

M⊤

i (θ, Xi) is positive definite. Moreover, we have ∥I−1/2
n,θ ∥∥Jn,θ∥ → ∞, supn∥I

−1/2
n,θ ∥∥I1/2n,θ ∥ < ∞, and

n∑
i=1

Di(θ, Xi)J−1
n,θ

p
→ I, I−1/2

n,θ

n∑
i=1

Mi(θ, Xi)
d

−→ Nm(0, I). (5)

Put En,θ (|δ|) =
∑n

i=1 Eωi,θ (|δ|, Xi), where

ωi,θ (|δ|, Xi) =

{
sup

t: |t−θ |≤|δ|

(Di(t, Xi) − Di(θ, Xi)
)∥J−1

n,θ∥ if [θ − δ, θ + δ] ⊂ Θ,

∞ otherwise.
(6)

(A4) lim sup En,θ (|δ|) → 0 as δ → 0.
(A5) There is an estimator θ∗

n such that ∥I−1/2
n,θ ∥∥Jn,θ∥|θ∗

n − θ |En,θ (|θ∗
n − θ |)

p
→ 0.

Theorem 1. If the conditions (A1)–(A5) hold then the estimator θ∗∗
n in (3) is defined with probability tending to 1 and the relation

(4) holds with An,θ = I−1/2
n,θ Jn,θ .

Remark 1. The relations (5) are versions of the law of large numbers and the central limit theorem for triangular
arrays of independent random variables. Sufficient conditions for fulfillment of such limit theorems are well known.
Condition (A5) is a universal constraint connecting the smoothness of the functions Mi(·, Xi) with the rate of convergence
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