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a b s t r a c t

In this paper a subsampling approach for nonstationary time series with a non-zero mean
function is proposed. It is applied for periodically and almost periodically processes. Two
statistical tests are constructed. An example with real data is presented.
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1. Introduction and problem formulation

In this paper we discuss a subsampling approach for nonstationary time series, which have a non-zero mean function.
First we introduce some notation. Let {Xt , t ∈ Z} be a nonstationary time series and µ(t) = E(Xt ) be its mean function.

We assume that µ(t) ̸≡ 0. Moreover, we consider the following decomposition of the mean function

µ(t) = µ1(t) + µ2(t).

Functions µ1(t) and µ2(t) can be interpreted differently depending on the application. In economics they can represent
e.g., seasonal or business fluctuations or a long-term trend, while in telecommunications these can be two periodic functions
e.g., the first one may be a pilot tone and the latter one the mean function of some periodic signal. A pilot tone is a signal
transmitted for control, synchronization or reference purposes. In the following we assume that µ1(t) is non-zero and
we know how to estimate it. On the other hand, µ2(t) may be a zero function and moreover we may not have complete
knowledge of its form and properties. Such a model describes a real data situation in which only partial information about
the mean function is available e.g., we know the nature of some structure contained in the data like seasonality, but other
components require further investigation.
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We denote the observed sample by Xn = (X1, X2, . . . , Xn). Let µ̂1,n(t) be the estimator of µ1(t) based on Xn. We consider
the modified sample X̃n = (X̃1,n, X̃2,n, . . . , X̃n,n), where

X̃t,n = Xt − µ̂1,n(t).

In the sequel, for the sake of simplicity we skip the subscript n and we denote elements of the triangular array X̃n by
X̃i, i = 1, . . . , n. From now we will be using only the sample X̃n, i.e., we consider partially or entirely demeaned data. This
corresponds to the standard procedures of data analysis in which the data is assumed to be demeaned before any further
analysis (e.g. second-order) is performed. In the next section we present how the subsampling idea for nonstationary time
series (see chapter 4 in Politis et al. (1999)) can be adapted to our setting. In Section 3 we construct two tests designed for
time series with periodic and almost periodic structure. The first one is devoted to the first-order frequency detection, while
the second one can be used for testing the second-order periodicity. Finally, Section 4 contains a real data application of our
results.

2. Subsampling

In the sequel we use notation introduced by Politis et al. (1999).
Let θ = θ (P) ∈ R be the parameter of interest, where P is the joint probability law governing {Xt , t ∈ Z}. Parameter

θ can simply relate to µ2(t), but one may consider other characteristics of Xt . Moreover, let θ̂n = θ̂n(X̃n) be the estimator
of θ and θ̂n,b,t = θ̂n,b,t (X̃t , X̃t+1, . . . , X̃t+b−1) be the estimator of θ based on subsample X̃t , X̃t+1, . . . , X̃t+b−1. In addition, let
θ̂ ′

n,b,t = θ̂n,b,t (X ′
t , X

′

t+1, . . . , X
′

t+b−1), where X ′

i = Xi − µ1(i), i ∈ Z.
By J ′b,t (P) and Jn(P) we denote the sampling distributions of τb(θ̂ ′

n,b,t − θ ) and τn(θ̂n − θ ), where τ(·) is an appropriate
normalizing sequence. The corresponding cumulative distribution functions are defined as

J ′b,t (x, P) = P
{
τb(θ̂ ′

n,b,t − θ ) ≤ x
}

(1)

and

Jn(x, P) = P
{
τn(θ̂n − θ ) ≤ x

}
. (2)

Finally, following Politis et al. (1999) we assume that Xt is α-mixing.
Conditions below are sufficient conditions for the subsampling consistency.

Assumption 2.1. There exists a limiting law J(P) such that

(i) Jn(P) converges weakly to J(P) as n −→ ∞.
(ii) For any continuity point x of J(P) and for any sequences n, b with n, b −→ ∞ and b/n −→ 0, we have

1
n−b+1

∑n−b+1
t=1 J ′b,t (x, P) −→ J(x, P).

OR
For any continuity point x of J(·, P) and for any index sequence {tb} we have that J ′b,tb (x, P) −→ J(x, P) as b −→ ∞.

(iii) max1≤t≤n−b+1τb

⏐⏐⏐θ̂n,b,t − θ̂ ′

n,b,t

⏐⏐⏐ p
−→ 0.

One may notice that comparing to Politis et al. (1999) (see Assumption 4.2.1. in Politis et al. (1999)) we need an additional
assumption (iii). It is caused by the fact that in contrast to Politis et al. (1999) we are using partially demeaned data. Finally,
condition (i) is identical to the one proposed by Politis et al., while (ii) is adjusted to our problem.

The approximation of Jn(x, P) is defined as

L̃n,b(x) =
1

n − b + 1

n−b+1∑
t=1

1
{
τb

(
θ̂n,b,t − θ̂n

)
≤ x

}
,

where 1{A} is an indicator function of the event A.
Below we state the asymptotic validity of subsampling for general statistics.

Theorem 2.1. Assume that {Xt , t ∈ Z} is α-mixing time series. Under Assumption 2.1 and taking τb/τn −→ 0, b = b(n) −→ ∞

such that b/n −→ 0 as n −→ ∞, we have

(i) if x is a continuity point of J(·, P), then L̃n,b(x)
p

−→ J(x, P),
(ii) if J(·, P) is continuous, then supx∈R|L̃n,b(x) − J(x, P)|

p
−→ 0,

(iii) for α ∈ (0, 1), let c(1 − α) = inf{x : J(x, P) ≥ 1 − α} and c̃n,b(1 − α) = inf{x : L̃n,b(x) ≥ 1 − α}. If J(·, P) is continuous
at point c(1 − α), then subsampling confidence intervals are asymptotically consistent, i.e.,

P
(
τn(θ̂n − θ ) ≤ c̃n,b(1 − α)

)
−→ 1 − α. (3)
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