Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Consider an alternating renewal process on the states 'broken' vs 'working'. Suppose that

during any interval $[0, \tau]$, the process is rewarded at rate $g(t/\tau)$ if it is working at time *t*.

Let Q_{τ} be the reward that is accumulated during $[0, \tau]$. We calculate $\mu_{Q_{\tau}}$ and $\sigma_{Q_{\tau}}^2$ such that

Crown Copyright © 2017 Published by Elsevier B.V. All rights reserved.

 $(Q_{\tau} - \mu_{Q_{\tau}})/\sigma_{Q_{\tau}}$ converges in distribution to a standard normal distribution as $\tau \to \infty$.

Asymptotic distribution of rewards accumulated by alternating renewal processes

Patrick Chisan Hew

Defence Science and Technology Group, Department of Defence (Australia), HMAS Stirling, Garden Island WA 6168, Australia

ABSTRACT

ARTICLE INFO

Article history: Received 1 May 2017 Received in revised form 26 June 2017 Accepted 28 June 2017 Available online 8 July 2017

MSC 2010: 62E20 90B25 60K05 60J27

Keywords: Reward Alternating renewal process Asymptotically normal

1. Introduction

Let $\mathcal{N}(\mu, \sigma^2)$ be the normal distribution with mean μ and variance σ^2 , and \Rightarrow denote convergence in distribution. We prove the following:

Theorem. Let X_t be an alternating renewal process on $\{0, 1\}$ with 0 = 'broken', 1 = 'working', formed from durations working $\{W_k\}$ alternated with durations broken $\{B_k\}$. Recall that there exist $z_1(t)$ and $z_0(t)$ such that

$$\mathcal{P}\{X_t = 1 | X_s = 1\} = p + (1 - p) \cdot z_1(t - s)$$

$$\mathcal{P}\{X_t = 0 | X_s = 0\} = 1 - p + p \cdot z_0(t - s)$$

where $p = \frac{\beta}{\alpha+\beta}$ given $\beta = \mathbb{E}(W_k)$, $\alpha = \mathbb{E}(B_k)$. Given $g : [0, 1] \to \mathbb{R}$, put $Q_\tau = \int_0^\tau g(t/\tau)X_t dt$ (reward the process at rate $g(t/\tau)$ if it is working at time t), and set

$$\mu_{Q_{\tau}} = \bar{g}\mu_{U_{\tau}} \qquad \qquad \mu_{U_{\tau}} = p\tau$$

$$\sigma_{Q_{\tau}}^2 = \gamma\sigma_{U_{\tau}}^2 \qquad \qquad \sigma_{U_{\tau}}^2 = 2p(1-p)\tau\xi$$

where $\bar{g} = \int_0^1 g(x) dx$, $\gamma = \int_0^1 (g(x))^2 dx$, $\zeta = \int_0^\infty z(t) dt$, and $z(t) = (1-p) \cdot z_1(t) + p \cdot z_0(t)$. Suppose that all of the following conditions are satisfied:

• $\mathbb{E}(W_k^2) + \mathbb{E}(B_k^2) > 0$, $\mathbb{E}(W_k^3) < \infty$, $\mathbb{E}(B_k^3) < \infty$, for all k.

http://dx.doi.org/10.1016/j.spl.2017.06.027

ELSEVIER jo

E-mail address: Patrick.Hew@defence.gov.au.

^{0167-7152/}Crown Copyright © 2017 Published by Elsevier B.V. All rights reserved.

- $0 < \zeta < \infty$, and there exists $\hat{z}(t)$ continuous and nonincreasing such that $|z(t)| \leq \hat{z}(t)$ for all t sufficiently large and $\int_0^\infty \hat{z}(t) dt < \infty$.
- $-\infty < \overline{g} < \infty, 0 < \gamma < \infty, and |\int_0^1 g(x)g'(x) dx| < \infty.$ Then $(Q_x - \mu_{0_x})/\sigma_{0_x} \Rightarrow \mathcal{N}(0, 1)$ as $\tau \to \infty$.

Remark. If $F(x) = g^{-1}(x)$ is a well-defined cumulative distribution function, and μ_R and σ_R^2 are the mean and variance of the distribution defined by *F*, then $\bar{g} = \mu_R$ and $\gamma = \sigma_R^2 + \mu_R^2$.

The finding appears to be novel in studies of alternating renewal processes, in two respects: First, the process accumulates a reward at rate g. Second, the value obtained for $\sigma_{U_{\tau}}^2$ is new. Indeed, we see that $\sigma_{U_{\tau}}^2$ is fully determined by p and ζ , where ζ comes from the process forgetting its initial conditions.

Note that $W_k, B_k > 0$ for all k by definition of alternating renewal processes. The existence of z_1 and z_0 is also assured, as it is well-known (Trivedi, 2002) that X_t becomes stationary from any starting condition. While it may be difficult to explicitly obtain z_1 and z_0 , we can harness a classic result by Takács (1959, Example 1): If $\sigma_{\alpha}^2 = \mathbb{E}(B_k^2), \sigma_{\beta}^2 = \mathbb{E}(W_k^2)$ then $U_{\tau} \Rightarrow \mathcal{N}(\mu_{U_{\tau}}, \sigma_{U_{\tau}}^2)$ as $\tau \to \infty$, where

$$\mu_{U_{\tau}} = \frac{\beta}{\alpha + \beta} \tau$$
$$\sigma_{U_{\tau}}^2 = \frac{\alpha^2 \sigma_{\alpha}^2 + \beta^2 \sigma_{\beta}^2}{(\alpha + \beta)^3} \cdot \tau$$

(While Takács took $\mathbb{E}(B_k^2)$, $\mathbb{E}(W_k^2) < \infty$, this article needs $\mathbb{E}(B_k^3)$, $\mathbb{E}(W_k^3) < \infty$.)

2. Proof

On any interval $[0, \tau]$ declare $V_{\tau} = Q_{\tau} - \bar{g}p\tau$. For any $\delta t > 0$ define $t_k = (k-1) \cdot \delta t$ and $Y_k = X_{t_k} - p$ where k = 1, 2, For any positive integer n put

$$\begin{aligned} Q_{n,\delta t} &= \left(g(\frac{1}{n})X_{t_1} + g(\frac{2}{n})X_{t_2} + \dots + g(1)X_{t_n}\right) \cdot \delta t\\ V_{n,\delta t} &= \left(g(\frac{1}{n})Y_1 + g(\frac{2}{n})Y_2 + \dots + g(1)Y_n\right) \cdot \delta t\\ \sigma_{n,\delta t}^2 &= (n \cdot \delta t) \cdot p \left(1 - p\right) \cdot \left(\delta t + 2\sum_{k=1}^{\infty} z(t_k) \,\delta t\right)\\ \gamma_n &= \frac{1}{n} \sum_{k=1}^n \left(g(\frac{k}{n})\right)^2. \end{aligned}$$

Without loss of generality, we assume that the process is strictly stationary at time zero. For there exists *s* such that $z_1(s)$ and $z_0(s)$ are arbitrarily close to zero, so we may shift our analysis from $[0, \tau]$ to $[s, s + \tau]$. Shifting τ to $s+\tau$ will not matter, as we will be taking $\tau \to \infty$. Consequently Y_k is strictly stationary for all *k*. Moreover for all *t* we have $\mathcal{P}{X_t = 1} = p$ and $\mathcal{P}{X_t = 0} = 1 - p$, so $\mathbb{E}(Y_k) = 0$ for all *k*. Declare the following cumulative distribution functions

$$G_{\tau}(v) = \mathcal{P}\{V_{\tau} \le v\}$$
$$G_{n,\delta t}(v) = \mathcal{P}\{V_{n,\delta t} \le v\}$$
$$H(\cdot; \mu, \sigma^{2}) \text{ for } \mathcal{N}(\mu, \sigma^{2}).$$

Let $\mathbb R$ denote the real numbers and $\mathbb Z_{\geq 0}$ denote the non-negative integers. We will prove the following propositions.

Proposition 1. If $-\infty < \bar{g} < \infty$, then for any $v \in \mathbb{R}$, $\psi > 0$, and $\epsilon_1 > 0$ there exists $\delta t_1 > 0$ such that if $\delta t < \delta t_1$, $m = \lfloor \frac{\psi}{\delta t} \rfloor$, n = m + m' for any $m' \in \mathbb{Z}_{\geq 0}$, and $\tau = n \cdot \delta t$ then $|G_{n,\delta t}(v) - G_{\tau}(v)| < \epsilon_1$.

Proposition 2. If $0 , <math>0 < \zeta < \infty$, and $0 < \gamma < \infty$, then for any $v \in \mathbb{R}$, $\psi > 0$, and $\epsilon_2 > 0$ there exists $\delta t_2 > 0$ such that if $\delta t < \delta t_2$, $m = \lfloor \frac{\psi}{\delta t} \rfloor$, n = m + m' for any $m' \in \mathbb{Z}_{\geq 0}$ and $\tau = n \cdot \delta t$ then $0 < \sigma_{n,\delta t}^2 < \infty$ and $|H(v; 0, \gamma_n \sigma_{n,\delta t}^2) - H(v; 0, \sigma_{Q_t}^2)| < \epsilon_2$.

Proposition 3. If $\mathbb{E}(W_k^2) + \mathbb{E}(B_k^2) > 0$, $\mathbb{E}(W_k^3) < \infty$, $\mathbb{E}(B_k^3) < \infty$ for all $k, 0 < \zeta < \infty$, there exists $\hat{z}(t)$ continuous and nonincreasing such that $|z(t)| \le \hat{z}(t)$ for all t sufficiently large and $\int_0^\infty \hat{z}(t) dt < \infty$, and $0 < \gamma < \infty$ and $|\int_0^1 g(x)g'(x) dx| < \infty$, then for any $v \in \mathbb{R}$, $\delta t > 0$, and $\epsilon_3 > 0$ there exists $N_3 > 0$ such that if $n > N_3$ and $0 < \sigma_{n,\delta t}^2 < \infty$ then $|G_{n,\delta t_3}(v) - H(v; 0, \gamma_n \sigma_{n,\delta t_3}^2)| < \epsilon_3$.

Download English Version:

https://daneshyari.com/en/article/5129751

Download Persian Version:

https://daneshyari.com/article/5129751

Daneshyari.com