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a b s t r a c t

We are interested in modeling networks in which the connectivity among the nodes and
node attributes are random variables and interact with each other. We propose a proba-
bilistic model that allows one to formulate jointly a probability distribution for these vari-
ables. This model can be described as a combination of a latent spacemodel and a Gaussian
graphical model: given the node variables, the edges will follow independent logistic dis-
tributions, with the node variables as covariates; given edges, the node variables will be
distributed jointly as multivariate Gaussian, with their conditional covariance matrix de-
pending on the graph induced by the edges. We will present some basic properties of this
model, including a connection between this model and a dynamical network process in-
volving both edges and node variables, the marginal distribution of the model for edges as
a random graph model, its one-edge conditional distributions, the FKG inequality, and the
existence of a limiting distribution for the edges in an infinite graph.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In modeling networks (Goldenberg et al., 2010; Kolaczyk, 2009; Newman, 2010), the usual focus is on the network
topologies. A network is typically modeled as a random graph (Bollobas, 2001; Durrett, 2010) defined in terms of a
probability distribution of the edge status. However, networks in many applied problems are not always just about links or
edges. More extensive data for certain networks, containing information not only for edges but also for some node variables
or attributes, are becoming available. For such data and for some important problems in network study, a limitation of the
randomgraphmodel is the absence of information from thenode variables. Such amodel is incapable of catching interactions
between edges and nodes. In a social network problem, for example, onemight be interested in studying users’ behaviors (or
some dynamical attribute in the user-profiles) as a function of the network topology, or vice versa (McAuley and Leskovec,
2012; Mislove et al., 2010), or in a gene network problem, one might be interested in inferring gene expression levels as a
function of an underlying regulatory network, or vice versa (Wang and Huang, 2014). When it comes to analyzing behaviors
of the nodes in a network or the influence of node behaviors on network topologies, the utility of the random graph models
becomes limited.

The latent spacemodel (Handcock andRaftery, 2007;Hoff et al., 2002; Kolaczyk, 2009) is another popular networkmodel.
It does assume the dependence of the edge probabilities on some node variables. The model however treats these variables
as latent variables, paying little attention to the inference on these variables. On the other hand, a Gaussian graphical model
describes a distribution for node variables on a network with built-in edge information of the network (through the inverse
covariance matrix). It however treats the network topology as a static parameter which remains constant regardless how
the node variables will change.
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In this paper, we propose a joint probability distribution for both edges and node variables (Section 2). A study of such a
model can shed lights on how edges and nodes interact with each other in a network so that information for both edges and
nodes can be utilized in studying the networks. In a way, our model can be described as a combination of the latent space
model and the Gaussian graphical model: given the node variables, the edges will follow independent logistic distributions,
with the node variables as covariates in the logistic function; given edges, the node variables will be distributed jointly as
multivariate Gaussian, with their conditional covariance matrix depending on the graph induced by the edges. In terms
of the marginal distribution for the node variables, our model generalizes the Gaussian graphical model to allow for the
underlying graphical structure to be random. In other words, it is now a mixture of Gaussian graphical models over all the
possible edge configurations of the network. Our model also leads to a non-trivial and interesting random graphical model
when we take the marginal distribution for the edges.

A reason thatmotivates us to propose such amodel is that it provides a sensible framework formodeling network dynam-
ics in which the edge status and the node variables change their values over time, as we will explain in the end of Section 2.
We will see that the dynamical system updates edge status and node variables alternatively according to the conditional
distributions between edges and nodes. The equilibrium (stable) distribution of the dynamical system is then exactly the
joint distribution we propose here. In other words, our model can be viewed as the stable probability law of a dynamical
network process.

We will pay particular attention to the marginal distribution for edges of our model. An explicit formula for the
conditional probability of one edge given all other edges is given in Section 3. We will show in Section 4 that the probability
distribution for edges is positively associated in the sense that it satisfies the FKG inequality (Grimmett, 2006; Holley, 1974),
a property that is shared by many well-knownmodels in statistical mechanics. We then give a weak convergence result for
the edge distribution based on the FKG inequality. To ensure consistent results in statistical analysis for very large networks,
it is essential that the model, as a probability law, has a limiting distribution. The concept of the limit for random graphs we
use here is that of the infinite-volume Gibbs distributions (Georgii, 1988) on graphs, involving both nodes and edges (see
Grimmett, 2006 for an example). We also note that there is a close similarity between our model and the random-cluster
model derived in the statistical mechanics (Grimmett, 2006): what our model is to the Gaussian graphical model is in some
sense similar to what the random-cluster model is to Ising or Potts models. This is indeed another reason that motivated us
to propose the model in this note.

2. The random Gaussian graphical model

We will call our model the random Gaussian graphical model and formulate it in this section. Let G = (V , E) be a finite
simple graph (undirected, unweighted, no loops, no multiple edges) with E being a subset of V × V which is fixed. Suppose
|V | = m and |E| = n. For convenience, we identify V as the integer set V = {1, . . . ,m}. Suppose associated with each node
i ∈ V there is a random variable Xi, representing an attribute of node i. Let X = {X1, . . . , Xm}. We will use x ∈ Rm to denote
a generic value of X . We write (i, j) for the edge in E which is incident with the nodes i, j ∈ V .

We will consider random sub-graphs of G in which V remains the same and E is reduced randomly to some subset of
itself. Such a random graph can be represented by a random adjacency matrix A = {Aij, i, j ∈ V } in which all the diagonal
elements Aii = 0, and for each edge (i, j) ∈ E, Aij = Aji = 1 if the edge is present in the random graph, and Aij = Aji = 0
if otherwise. It is always understood that Aij ≡ 0 for all (i, j) ∉ E. We will call Aij an edge variable. With a slight abuse of
notation, we let A = {0, 1}E be the set of all possible values of A. We will use a = aT ∈ A to denote a generic value of the
adjacency matrix A.

By ‘‘random Gaussian graphical model’’ wemean the following joint probability density for variables A and X , defined on
the space A × Rm,

µ(a, x) ≡
1
Z
exp


−

1
2
H(a, x)


, (a, x) ∈ A × Rm, (1)

where

H(a, x) = α


i

x2i + β


(i,j)∈E

aij(xi − xj)2 (2)

for some parameters α > 0 and β ≥ 0, and Z is the normalizing constant. It is clear that this Z is always finite.
We note that in this model, if all aij = 1 it becomes an usual Gaussian graphical model (as we will see below). Therefore,

we can consider the Gaussian graphical model as a ‘‘full model’’ relative to the given edge set E while model (1) as a model
that allows us to ‘‘turn off’’ some edges in E at random according to the values of aij’s. In particular, if all aij = 0 and
therefore there are no connections among the nodes in the graph, Xi’s are independent N(0, 1/α) random variables. The
joint distribution of aij’s in turn depends on Xi’s. In general, the likelihood of connectivity among the nodes is determined
by the magnitudes of the differences between the corresponding node variables and the value of β . On the other hand, the
connectivity of the nodes will, in turn, affect the distribution of the node variables.
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