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• Asymptotic tests are developed for the means of interval-valued populations.
• The limiting null distributions are derived in analytical form.
• Large sample tests can be performed by numerical integration of Bessel function.
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a b s t r a c t

We develop asymptotic tests for the means of interval-valued population. The problem
is formulated and studied in the framework of random compact convex sets. Under both
one-sample and two-sample settings, we derive analytical forms of the probability density
functions for the limiting null distributions. Large sample testing rules are given based on
numerical integration of the Bessel function.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Interval-valued data is gaining increasing popularity, arising from various circumstances such as lack of precision,
grouping, and censoring. With the trend of big data recently, data aggregations are being extensively used to reduce the
sample size, resulting in a large amount of interval-valued data. Precisely, interval-valued data refers to collections of
observations in the format of intervals, as opposed to single numbers. Practical examples include measurement range, daily
temperature range, [min, max] observation of a group of individuals, among many others. There has been a great deal of
literature on statistical inferences with interval-valued data (e.g., Diamond, 1990; Gil et al., 2002; Jeon et al., 2014; Sun and
Ralescu, 2015; Sun and Ralescu, 2015). This paper is concerned with hypothesis testing for the means of interval-valued
data, in the formulation of random sets. That is, we view the observed intervals as realizations of random intervals, which
are one-dimensional random sets. A solid probabilistic foundation for studying random sets has been provided by Kendall
(1974) and Matheron (1975).

The problemwas previously studied inMontenegro et al. (2008), where a weighted average of squared t statistics for the
center and spread of the intervalwas proposed as the test statistic. However, having a complicated form, the null distribution
had to be approximated by a bootstrap technique. In this paper,we propose test statistics for interval-valuedmeans based on
an L2 distance in the space of intervals. The limiting null distributions are derived for the one-sample test, paired two-sample
test, and two-sample testwith unequal sample sizes.We give the corresponding probability density functions in closed form
in terms of the Bessel function. Therefore, approximate large sample tests can be performed by numerical integration of the
Bessel function.
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The rest of the paper is organized as follows. Section 2 introduces some preliminaries of the random sets theory. The
asymptotic results are presented in Section 3 for the one-sample test and in Section 4 for the two-sample test. We provide
a numerical example in Section 5. Technical proofs are collected in the Appendix.

2. Preliminaries of random sets

Let (Ω, L , P) be a probability space. Denote by K

Rd


or K the collection of all non-empty compact subsets of Rd. A

random compact set is a Borel measurable function A : (Ω, L ) → (K, F ), where F is the σ -algebra on K induced by
the Hausdorff metric. If A(ω) is convex almost surely, then A is called a random compact convex set. The collection of all
compact convex subsets ofRd is denoted byKC


Rd


orKC . The expected value of a random compact convex set A is defined

by Aumann (1965) as

E(A) =

Ef |f ∈ L1(Ω, L , P), f (ω) ∈ A(ω) a.s.


where f : Ω → Rd as above is called a selection of A, and Ef denotes the classical expectation of a random vector. In
particular, a measurable function A : Ω → KC (R) is called a random interval, and its expected value is given explicitly as

E(A) = [E inf {A} , E sup {A}] .

For A ∈ KC


Rd


, define a function on the unit sphere Sd−1 of Rd as

sA (u) = sup
a∈A

⟨u, a⟩ , ∀u ∈ Sd−1.

This function is called the support function of A ∈ KC


Rd


, and it plays a key role in establishing the theory for random

compact convex sets. According to the embedding theorems (Rådström, 1952; Hörmander, 1954), KC can be embedded
isometrically into the Banach space C(S) of continuous functions on Sd−1. The embedding can be defined by the support
function of A ∈ KC


Rd


. Therefore, letting S be the space of support functions of all non-empty compact convex subsets in

Rd, S is the image of KC into C(S). In S, an L2 metric is given by the norm

∥sA(u)∥2 =


d

Sd−1

|sA(u)|2µ (du)
 1

2

,

where µ is the normalized Lebesgue measure on Sd−1. Correspondingly, an L2 distance in KC


Rd


can be defined as

δ (A, B) := ∥sA − sB∥2

=


d

Sd−1

|sA(u) − sB(u)|2µ (du)
 1

2

, ∀A, B ∈ KC


Rd .

Amore general L2 distance – particularly forKC (R) – has been introduced in Körner andNäther (1998, 2001) via the support
function as

DK (A, B) =

 
S0×S0

[sA(u) − sB(u)] [sA(v) − sB(v)] K(u, v)

 1
2

∀A, B ∈ KC (R) .

Here K(·, ·) is a symmetric positive definite kernel on S0.
Denote a bounded closed interval by X = [XC

− XR, XC
+ XR

] with center XC
∈ R and radius XR

≥ 0. Alternatively,
the interval is also denoted by X = [X L, XU

], where X L and XU are the lower and upper bounds satisfying X L
≤ XU . The L2

distance defined in (1) for two intervals X, Y ∈ KC(R) turns out to have the simple form

δ (X, Y ) =


XC

− Y C2
+


XR

− Y R2 1
2
. (1)

It is shown (Gil et al., 2002) that, with the constraints K(1, 1) = K(−1, −1) and K(1, −1) ≥ 0,DK is equivalent to the
so-calledW -distance

dW (X, Y ) =


[0,1]

[fX (λ) − fY (λ)]2 dW (λ)

 1
2

, (2)

where fX (λ) = λXU
+ (1 − λ)X L, ∀λ ∈ [0, 1], and W is a non-degenerate measure on [0, 1] symmetric about 1/2. The

apparent spirit of dW lies in its distribution assumption for the points in the interval. On the other hand, it is also seen that

dW (X, Y ) =


[0,1]


XC

− Y C
+ (2λ − 1)


XR

− Y R2 dW (λ)

 1
2

=


XC

− Y C2
+ ω


XR

− Y R2 1
2
, (3)
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