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a b s t r a c t

This paper finds that heteroskedasticity in nonclassical error-in-variable models leads to
biased and inconsistent estimates when higher-order moments of data are used. A closed-
form estimator is provided to correct this bias based on information from the first three
moments.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Regressions with binary regressors are widely used and studied in economics, such as those concerning employment
status, union status, gender, narrative estimation, etc. Themajor concernswhen using binary regressors aremisclassification
(i.e., measurement error) and heteroskedasticity. For example, self-reported levels of education (e.g., whether or not one has
graduated from college) may be inaccurate if respondents misreport. It is also very likely that people who graduate from
college have a different probability of cheating than those who do not graduate from college, implying that we need to
take into account nonclassical errors. We might also think about monetary policy shock measurement. Rosa (2012) uses a
narrativemethod tomeasure unconventionalmonetary policy shocks on Federal OpenMarket Committee dates by assigning
them a value of 0 or 1. This might introduce errors since the classification is somewhat subjective.

A lot of studies focus on the measurement-error problem, see Fuller (1987) and Chen et al. (2011) for a review. Chen
et al. (2008a,b) (hereafter CHL) provide a nonparametric way to deal with this problem. However, they do not consider
heteroskedasticity in the identification which might severely bias their estimates as shown in this paper. This is different
from the classical framework where heteroskedasticity only affects efficiency but not unbiasedness or consistency. The
reason is that instead of using instrumental variables (IV) or other additional information, CHL explore moments of data.
Hence if the structure of the second moment is misspecified (i.e., heteroskedasticity), their estimates will be invalid. Based
on a few simple assumptions, this paper provides an estimator to fix this problem without using instrumental variables or
additional sample information.

Consider a nonparametric regression model:

Y = m

X∗

+ ε, (1)
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where Y is a scalar dependent variable, X∗ is a 0, 1 dichotomous regressor, and ε is the error term. Let X denote the proxy
variable for the true variable X∗. Both Y and X are observable, while X∗ and ε are not observed. The exogeneity condition is
satisfied, since we assume the expected value of ε given the latent X∗ is equal to 0. Note that discreteness of X and X∗ means
that the measurement error X − X∗ will be nonclassical, as described in CHL.

Assumption 1. The error term can be decomposed as

ε = σ

X∗

η, E


η|X∗


= 0, (2)

where σ (X∗) is a nonparametric function of the true variable X∗.

This assumption holds if ε is a homogeneous function of X∗ and η. Usually, we need an IV or additional data to tackle
this problem. However, we will see that this model can be identified if we are willing to explore higher-order moments and
impose a few restrictions.

Definemj = m (j) and σj = σ (j) for j = 0, 1. Since X∗ is binary, we only need to identifym0 andm1. Then, the conditional
distributions of Y and η conditional on X∗ and the probability mass function of X given X∗ are easily identified. Note that
the results can be easily extended to the case of Y = m (X∗,W ) + ε, where W is a vector of additional regressors that are
exogenous and correctly measured.

The identification strategy proposed here relies on some assumptions regarding the regression model instead of on
additional sample information. The key assumptions are that the first three moments of the separated error term η are
independent of the latent regressor, and that the distribution of η is not skewed. These simple assumptions directly enable
us to nonparametrically identify the latent regression function as a known function of observed moments.

This paper is organized as follows: Section 2 provides the main identification results and Section 3 concludes the paper.

2. Nonparametric identification

2.1. Identification

Assumption 2. X ⊥ η | X∗

By Assumption 2, we know that the measurement error X − X∗ is independent of the dependent variable Y conditional
on the true value X∗. In other words, we have fY |X∗,X (y|x∗, x) = fY |X∗ (y|x∗). Assumption 2 is a standard assumption in the
literature, and a similar version of this assumption is also used by CHL. Moreover, it follows from Assumption 2 that there
is a relationship between the observed density and the latent density:

fY |X (y|j) = PX∗=0|X=jfY |X∗ (y|0)+ PX∗=1|X=jfY |X∗ (y|1)

= PX∗=0|X=jfε|X∗ (y − m0|0)+ PX∗=1|X=jfε|X∗ (y − m1|1) . (3)

Equality (3) is useful when we want to identify the unobservable density PX∗=i|X=j and fε|X∗ (y − mi|j) for i, j = 0 or 1.
Now, define

p = PX∗=1|X=0, q = PX∗=0|X=1, µ0 = E [Y |X = 0] , µ1 = E [Y |X = 1] ,

where p and q represent the probability of misreporting. Since E [η|X∗] = 0 by Assumption 1, we know from (3) that

µ0 = (1 − p)m0 + pm1, µ1 = qm0 + (1 − q)m1. (4)

Assumption 3. (i) µ1 > µ0; (ii) p + q ∈ [0, 1).

Part (i) is not restrictive because we can always redefine X as 1−X if needed. Part (ii) means that the data always contain
some information that makes the projection from the data to the true value better than a pure guess. Assumption 3 implies
that X∗ and X affect the conditional mean of Y in the same direction, which usually holds when the regression is not very
severely contaminated by measurement errors.

Solve (4) for p and q provides

p =
µ0 − m0

m1 − m0
, q =

m1 − µ1

m1 − m0
. (5)

By Assumption 3, (5) implies that

m1 ≥ µ1 ≥ µ0 ≥ m0. (6)

Assumption 4. (i) E

η2|X∗


= E


η2

; (ii) E


η3|X∗


= E


η3


= 0; (iii) σ0 = 1.
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