Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/stapro)

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Reducing bias in nonparametric density estimation via bandwidth dependent kernels: *L*₁ view[★]

a b s t r a c t

© 2016 Elsevier B.V. All rights reserved.

K[a](#page-0-1)irat Myn[b](#page-0-2)aev^a, Carlos Martins-Filho ^{b[,c,](#page-0-3)}*

a *International School of Economics, Kazakh-British Technical University, Tolebi 59, Almaty 050000, Kazakhstan*

^b *Department of Economics, University of Colorado, Boulder, CO 80309-0256, USA*

c *IFPRI, 2033 K Street NW, Washington, DC 20006-1002, USA*

a r t i c l e i n f o

Article history: Received 24 February 2016 Received in revised form 19 November 2016 Accepted 20 November 2016 Available online 5 December 2016

MSC: 62G07 62G10 62G20

Keywords: Kernel density estimation Higher order kernels Bias reduction

1. Introduction

Given a sequence of $n \in \mathbb{N}$ independent realizations $\{X_j\}_{j=1}^n$ of the random variable *X*, having density *f* on \mathbb{R} , the Rosenblatt–Parzen kernel estimator [\(Rosenblatt,](#page--1-0) [1956;](#page--1-0) [Parzen,](#page--1-1) [1962\)](#page--1-1) of *f* is given by

$$
f_n(x) = \frac{1}{n} \sum_{j=1}^n (S_{h_n} K)(x - X_j),
$$
\n(1.1)

We define a new bandwidth-dependent kernel density estimator that improves existing convergence rates for the bias, and preserves that of the variation, when the error is measured in *L*1. No additional assumptions are imposed to the extant literature.

where *S^hⁿ* is an operator defined by

$$
(S_{h_n}K)(x) = \frac{1}{h_n}K\left(\frac{x}{h_n}\right),\tag{1.2}
$$

K is a kernel, i.e., a function on R such that $\int K(x)dx=1$ and $h_n>0$ is a non-stochastic bandwidth such that $h_n\to 0$ as $n \to \infty$ ^{[1](#page-0-5)}

∗ Corresponding author at: Department of Economics, University of Colorado, Boulder, CO 80309-0256, USA.

 1 Throughout this note, integrals are over R, unless otherwise specified.

<http://dx.doi.org/10.1016/j.spl.2016.11.019> 0167-7152/© 2016 Elsevier B.V. All rights reserved.

 $\dot{\tilde{z}}$ We thank an anonymous referee and an Associate Editor for excellent comments that improved this note significantly.

E-mail addresses: kairat_mynbayev@yahoo.com (K. Mynbaev), [carlos.martins@colorado.edu,](mailto:carlos.martins@colorado.edu) c.martins-filho@cgiar.org (C. Martins-Filho).

One of the most natural and mathematically sound [\(Devroye](#page--1-2) [and](#page--1-2) [Györfi,](#page--1-2) [1985;](#page--1-2) [Devroye,](#page--1-3) [1987\)](#page--1-3) criteria to measure the performance of f_n as an estimator of f is the L_1 distance $\int|f_n-f|.$ In particular, given that this distance is a random variable (measurable function of $\{X_j\}_{j=1}^n$) it is convenient to focus on $E\left(\int|f_n-f|\right)$, where E denotes the expectation taken using f . For this criterion, there is a simple bound [\(Devroye,](#page--1-3) [1987,](#page--1-3) p. 31)

$$
E\left(\int |f_n-f|\right)\leq \int |(f*S_{h_n}K)-f|+E\left(\int |f_n-f*S_{h_n}K|\right),
$$

where for arbitrary $f, g \in L_1$, $(f * g)(x) = \int g(y)f(x - y)dy$ is the convolution of f and g . The term $\int |f * S_{h_n}K - f|$ is called bias over \R and $E\left(\int|f_n-f\ast S_{h_n}K|\right)$ is called the variation over $\R.$ There exists a large literature devoted to establishing conditions on *f* and *K* that assure suitable rates of convergence of the bias to zero as $n \to \infty$ (see, *inter alia*, [Silverman,](#page--1-4) [1986;](#page--1-4) [Devroye,](#page--1-3) [1987;](#page--1-3) [Tsybakov,](#page--1-5) [2009\)](#page--1-5). In particular, if *K* is of order *s*, i.e., $\alpha_j(K) = 0$ for $j = 1, \ldots, s - 1$ and $\alpha_s(K) \neq 0$, where $\alpha_j(K)=\int t^jK(t)dt$ is the jth moment of K, and f has an integrable derivative $f^{(s)}$, then $\int|f*S_{h_n}K-f|$ is of order $O(h_n^s)$ and this order cannot be improved, see, e.g., [Devroye](#page--1-3) [\(1987,](#page--1-3) Theorem 7.2). In this note, we show that if in [\(1.2\)](#page-0-6) the kernel is allowed to depend on *n*, then the order $O(h_n^s)$ can be replaced by the order $o(h_n^s)$, without increasing the order of the kernel or the smoothness of the density. In addition, another result from [Devroye](#page--1-3) [\(1987\)](#page--1-3) states that if *K* is a kernel of order greater than *s* and the derivative $f^{(s)}$ is a-Lipschitz then the bias is of order $O(h_n^{s+a})$. We achieve the same rate of convergence with kernels of order *s*.

2. Main results

Let L_1 and C denote the spaces of integrable and (bounded) continuous functions on \R with norms $\|f\|_1=\int|f|$ and $||f||_C$ = sup |*f* |, and $β_s(K) = ∫ |t|^s$ |*K*(*t*)| *dt*. Let {*K_n*} be a sequence of kernels and define

$$
\hat{f}_n(x) = \frac{1}{n} \sum_{j=1}^n (S_{h_n} K_n)(x - X_j).
$$

In the following [Theorem 1,](#page-1-0) the density *f* has the same degree of smoothness and the kernels *Kⁿ* are of the same order as in [Devroye](#page--1-3) [\(1987,](#page--1-3) Theorem 7.2), but the bias is of order $o(h_n^s)$ instead of $O(h_n^s)$. This results because the kernels depend on *n* and have ''disappearing'' moments of order *s*.

Theorem 1. Let {K_n} be a sequence of kernels of order s such that: 1. $\alpha_s(K_n) \to 0$; 2. {u^sK_n(u)} is uniformly integrable. For all j *with absolutely continuous* $f^{(s-1)}$ and $f^{(s)} \in L_1$, we have $||f * S_{h_n} K_n - f||_1 = o(h_n^s)$.

Proof. Note that since *Kⁿ* is a kernel

$$
f * S_{h_n} K_n(x) - f(x) = \int K_n(t) [f(x - h_n t) - f(x)] dt.
$$
\n(2.1)

Since *f* is *s*-times differentiable, by Taylor's Theorem,

$$
f(x-h_n t)-f(x)=\sum_{j=1}^{s-1}\frac{f^{(j)}(x)}{j!}(-h_n t)^j+\int_x^{x-h_n t}\frac{(x-h_n t-u)^{s-1}}{(s-1)!}f^{(s)}(u)du.
$$

Furthermore, given that *Kⁿ* is of order *s*,

$$
f * S_{h_n} K_n(x) - f(x) = \frac{1}{(s-1)!} \iint_X^{x - h_n t} (x - h_n t - u)^{s-1} f^{(s)}(u) du K_n(t) dt.
$$
 (2.2)

Letting $\lambda = -\frac{u-x}{h_nt}$ we have

$$
\int_{x}^{x-h_{n}t} (x-h_{n}t-u)^{s-1} f^{(s)}(u) du = (-h_{n}t)^{s} \int_{0}^{1} f^{(s)}(x-h_{n}\lambda t) (1-\lambda)^{s-1} d\lambda.
$$
 (2.3)

Substituting [\(2.3\)](#page-1-1) into [\(2.2\)](#page-1-2) we obtain

$$
f * S_{h_n}K_n(x) - f(x) = \frac{(-h_n)^s}{s!} \iint_0^1 f^{(s)}(x - h_n \lambda t) s (1 - \lambda)^{s-1} d\lambda t^s K_n(t) dt.
$$
 (2.4)

Since $\int_0^1 (1 - \lambda)^{s-1} d\lambda = \frac{1}{s}$, we have that

$$
\frac{(-h_n)^s}{(s-1)!} \iint_0^1 f^{(s)}(x)(1-\lambda)^{s-1} d\lambda t^s K_n(t) dt = \frac{(-h_n)^s}{s!} f^{(s)}(x) \int t^s K_n(t) dt.
$$
\n(2.5)

Download English Version:

<https://daneshyari.com/en/article/5129836>

Download Persian Version:

<https://daneshyari.com/article/5129836>

[Daneshyari.com](https://daneshyari.com)