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a b s t r a c t

We define a new bandwidth-dependent kernel density estimator that improves existing
convergence rates for the bias, and preserves that of the variation, when the error is
measured in L1. No additional assumptions are imposed to the extant literature.
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1. Introduction

Given a sequence of n ∈ N independent realizations {Xj}
n
j=1 of the random variable X , having density f on R, the

Rosenblatt–Parzen kernel estimator (Rosenblatt, 1956; Parzen, 1962) of f is given by

fn(x) =
1
n

n
j=1

(ShnK)(x − Xj), (1.1)

where Shn is an operator defined by

(ShnK)(x) =
1
hn

K


x
hn


, (1.2)

K is a kernel, i.e., a function on R such that

K(x)dx = 1 and hn > 0 is a non-stochastic bandwidth such that hn → 0 as

n → ∞.1
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One of the most natural and mathematically sound (Devroye and Györfi, 1985; Devroye, 1987) criteria to measure the
performance of fn as an estimator of f is the L1 distance


|fn − f |. In particular, given that this distance is a random variable

(measurable function of {Xj}
n
j=1) it is convenient to focus on E


|fn − f |


, where E denotes the expectation taken using f .

For this criterion, there is a simple bound (Devroye, 1987, p. 31)

E


|fn − f |


≤


|(f ∗ ShnK) − f | + E


|fn − f ∗ ShnK |


,

where for arbitrary f , g ∈ L1, (f ∗ g)(x) =

g(y)f (x− y)dy is the convolution of f and g . The term


|f ∗ ShnK − f | is called

bias over R and E


|fn − f ∗ ShnK |

is called the variation over R. There exists a large literature devoted to establishing

conditions on f and K that assure suitable rates of convergence of the bias to zero as n → ∞ (see, inter alia, Silverman,
1986; Devroye, 1987; Tsybakov, 2009). In particular, if K is of order s, i.e., αj(K) = 0 for j = 1, . . . , s − 1 and αs(K) ≠ 0,
whereαj(K) =


t jK(t)dt is the jthmoment of K , and f has an integrable derivative f (s), then


|f ∗ShnK− f | is of orderO(hs

n)
and this order cannot be improved, see, e.g., Devroye (1987, Theorem 7.2). In this note, we show that if in (1.2) the kernel is
allowed to depend on n, then the order O(hs

n) can be replaced by the order o(hs
n), without increasing the order of the kernel

or the smoothness of the density. In addition, another result from Devroye (1987) states that if K is a kernel of order greater
than s and the derivative f (s) is a-Lipschitz then the bias is of order O(hs+a

n ). We achieve the same rate of convergence with
kernels of order s.

2. Main results

Let L1 and C denote the spaces of integrable and (bounded) continuous functions on R with norms ∥f ∥1 =


|f | and
∥f ∥C = sup |f |, and βs(K) =


|t|s |K(t)| dt . Let {Kn} be a sequence of kernels and define

f̂n(x) =
1
n

n
j=1

(ShnKn)(x − Xj).

In the following Theorem 1, the density f has the same degree of smoothness and the kernels Kn are of the same order as
in Devroye (1987, Theorem 7.2), but the bias is of order o(hs

n) instead of O(hs
n). This results because the kernels depend on n

and have ‘‘disappearing’’ moments of order s.

Theorem 1. Let {Kn} be a sequence of kernels of order s such that: 1. αs(Kn) → 0; 2. {usKn(u)} is uniformly integrable. For all f
with absolutely continuous f (s−1) and f (s)

∈ L1, we have ∥f ∗ ShnKn − f ∥1 = o(hs
n).

Proof. Note that since Kn is a kernel

f ∗ ShnKn(x) − f (x) =


Kn(t)[f (x − hnt) − f (x)]dt. (2.1)

Since f is s-times differentiable, by Taylor’s Theorem,

f (x − hnt) − f (x) =

s−1
j=1

f (j)(x)
j!

(−hnt)j +
 x−hnt

x

(x − hnt − u)s−1

(s − 1)!
f (s)(u)du.

Furthermore, given that Kn is of order s,

f ∗ ShnKn(x) − f (x) =
1

(s − 1)!

 x−hnt

x
(x − hnt − u)s−1f (s)(u)duKn(t)dt. (2.2)

Letting λ = −
u−x
hnt

we have x−hnt

x
(x − hnt − u)s−1f (s)(u)du = (−hnt)s

 1

0
f (s)(x − hnλt)(1 − λ)s−1dλ. (2.3)

Substituting (2.3) into (2.2) we obtain

f ∗ ShnKn(x) − f (x) =
(−hn)

s

s!

 1

0
f (s)(x − hnλt)s(1 − λ)s−1dλtsKn(t)dt. (2.4)

Since
 1
0 (1 − λ)s−1dλ =

1
s , we have that

(−hn)
s

(s − 1)!

 1

0
f (s)(x)(1 − λ)s−1dλtsKn(t)dt =

(−hn)
s

s!
f (s)(x)


tsKn(t)dt. (2.5)



Download English Version:

https://daneshyari.com/en/article/5129836

Download Persian Version:

https://daneshyari.com/article/5129836

Daneshyari.com

https://daneshyari.com/en/article/5129836
https://daneshyari.com/article/5129836
https://daneshyari.com

