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a b s t r a c t

Our goal is to establish large deviations for the maximum likelihood estimator of the drift
parameter of the Ornstein–Uhlenbeck process without tears.We propose a new strategy to
establish large deviation results which allows us, via a suitable transformation, to circum-
vent the classical difficulty of non-steepness. Our approach holds in the stable case where
the process is positive recurrent as well as in the unstable and explosive cases where the
process is respectively null recurrent and transient. It can also be successfully implemented
for more complex diffusion processes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Consider the Ornstein–Uhlenbeck process observed over the time interval [0, T ]

dXt = θXtdt + dBt (1.1)

where (Bt) is a standard Brownian motion and the drift θ is an unknown real parameter. For the sake of simplicity, we
assume that the initial state X0 = 0. The process is said to be stable if θ < 0, unstable if θ = 0, and explosive if θ > 0. The
maximum likelihood estimator of θ is given by

θT =

 T
0 XtdXt T
0 X2

t dt
=

X2
T − T

2
 T
0 X2

t dt
. (1.2)

It is well-known that in the stable, unstable, and explosive cases

lim
T→∞

θT = θ a.s.

The purpose of this paper is to establish large deviation principles (LDP) for (θT ) via fairly easy to handle arguments. In the
stable case, Florens-Landais and Pham (1999) proved an LDP for the score function defined, for all c ∈ R, by T

0
XtdXt − c

 T

0
X2
t dt.
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Then, they were able to deduce, by contraction, the LDP for (θT ). However, one can realize in Lemma 4.3 of Florens-Landais
and Pham (1999) that the normalized cumulant generating function of the score function is quite complicated to compute.
Moreover, its LDP relies on a sophisticated time varying change of probability.

In the unstable and explosive cases (Bercu et al., 2012), the strategy for proving an LDP for (θT ) is also far from being
obvious. As a matter of fact, on can observe in Lemma 2.1 of Bercu et al. (2012) that the normalized cumulant generating
function is also very complicated to evaluate. Moreover, as the limiting cumulant generating function is not steep, it is also
necessary to make use of a sophisticated time varying change of probability.

Our approach is totally different. It will allows us, via a suitable transformation, to circumvent the classical difficulty of
non-steepness. The starting point is to establish, thanks to Gärtner–Ellis’s theorem Dembo and Zeitouni (1998), an LDP for
the couple

VT =

 XT
√
T

,
ST
T


(1.3)

where the energy ST is given by

ST =

 T

0
X2
t dt.

Then, we will obtain the LDP for (θT ) by a direct use of the contraction principle. We refer the reader to Bercu and Richou
(2015) where our approach was already implemented for the stable Ornstein–Uhlenbeck process with shift. We also wish
to stress that our strategy could be successfully extended to more complex diffusions such as the Pearson diffusion (Forman
and Sorensen, 2008)

dXt = (a + bXt)dt +


αX2

t + βXt + γ dBt

whereα, β and γ are chosen such that the square root iswell defined for any Xt in the state space. In particular, our approach
could be extended to the Jacobi diffusion (Alfonsi, 2015; Demni and Zani, 2009; Zhao and Gao, 2010)

dXt = (a + bXt)dt + 2

1 − X2

t dBt

where a ≥ 4 + b and a + b ≤ −4, as well as to the Wright–Fisher diffusion (Alfonsi, 2015)

dXt = (a + bXt)dt + 2

Xt(1 − Xt) dBt

where a ≥ 2 and a + b ≤ −2. Furthermore, LDP for the estimators of the unknown parameters of the Cox–Ingersoll–Ross
diffusion

dXt = (a + bXt)dt + 2

XtdBt

where a > 2 and b < 0 can be found in Du Roy de Chaumaray (2016) and Zani (2002). It still remains to investigate the
explosive case b > 0.

The paper is organized as follows. In Section 2, we establish an LDP for the couple given by (1.3) and we deduce
by contraction the LDP for (θT ) in the stable, unstable, and explosive cases. Standard tools for proving LDP such as the
Gärtner–Ellis theorem and the contraction principle are recalled in Appendix A, while all technical proofs of Section 2 are
postponed to Appendix B.

2. Large deviations

The usual notions of full and weak LDP are as follows.

Definition 2.1. A sequence of random vectors (VT ) of Rd satisfies an LDP with speed T and rate function I if I is a lower
semicontinuous function from Rd to [0, +∞] such that,
(i) Upper bound: For any closed set F ⊂ Rd,

lim sup
T→∞

1
T
log P


VT ∈ F


≤ − inf

x∈F
I(x). (2.1)

(ii) Lower bound: For any open set G ⊂ Rd,

− inf
x∈G

I(x) ≤ lim inf
n→∞

1
T
log P


VT ∈ G


. (2.2)

Moreover, I is said to be a good rate function if its level sets are compact.

Definition 2.2. A sequence of random vectors (VT ) of Rd satisfies a weak LDP with speed T and rate function I if I is a lower
semicontinuous function from Rd to [0, +∞] such that the upper bound (2.1) holds for any compact set, while the lower
bound (2.2) is true for any open set.

It is well-known that if (VT ) is exponentially tight and satisfies a weak LDP, then I is a good rate function and the full LDP
holds for (VT ), see Lemma 1.2.18 of Dembo and Zeitouni (1998).
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