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a b s t r a c t

Let γ denote any centered Gaussian measure on Rd. It is proved that for any closed convex
sets A and B in Rd, and any closed convex cones C and D in Rd, if D ⊇ C◦, where C◦ is the
polar cone of C , then

γ ((A + C) ∩ (B + D)) ≤ γ (A + C) · γ (B + D),

and

γ ((A + C) ∩ (B − D)) ≥ γ (A + C) · γ (B − D).

As an application, this new inequality is used to bound the asymptotic posterior distribu-
tions of likelihood ratio statistics for convex cones.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

There are many inequalities about Gaussian measures over convex sets due to the diverse applications to probability,
statistics, econometrics, geometry, quantum physics and other areas. Many such inequalities can be found in some books
(e.g., Bogachev, 1998; Ledoux and Talagrand, 1991; Gine and Nickl, 2015) and review papers (e.g., Latala, 2002; Li and Shao,
2001).

Let γ denote any centeredGaussianmeasure onRd. Thewell knownGaussian correlation inequality for symmetric convex
sets that was conjectured more than 40 years ago states that if K and L are two closed symmetric convex sets in Rd, then

γ (K ∩ L) ≥ γ (K) · γ (L).

Earlier partial proofs of this conjecture and applications to frequentist confidence sets can be found in Borell (1981),
Schechtman et al. (1998), Khatri (1967), Sidak (1967) and Latala (2002) among others. This conjecture has been recently
proved in full generality by Royen (2014); see Latala and Matlak (2015) for an easy-to-follow presentation.

In this notewe first establish a reverse Gaussian correlation inequality by adding convex cones.We then provide a simple
application to bound the asymptotic posterior distributions of likelihood ratio statistics for convex cones.
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2. A reverse Gaussian correlation inequality by adding cones

In this and the next sections, we use some well-known facts about closed convex cones that are presented in any
textbooks on convex analysis, seeHiriart-Urruty and Lemarechal (2001) for example. All the closed convex coneswe consider
start at zero. For any convex cone C ∈ Rd its polar cone is defined as C◦

:=

x ∈ Rd

| ⟨y, x⟩ ≤ 0, for all y ∈ C

. We first

establish the following inequality:

Theorem 1. For any closed convex sets A and B in Rd, and any closed convex cones C and D in Rd, if D ⊇ C◦, where C◦ is the
polar cone of C, then

γ ((A + C) ∩ (B + D)) ≤ γ (A + C) · γ (B + D),

and

γ ((A + C) ∩ (B − D)) ≥ γ (A + C) · γ (B − D),

where γ is any centered Gaussian measure on Rd.

2.1. Proof of Theorem 1

By otherwise replacing A and B by the convex setsΣ−1/2A andΣ−1/2B, and replacing C andD by the convex conesΣ−1/2C
andΣ−1/2D, whereΣ is a d×d positive definitematrix, we can assume that γ is the standard Gaussianmeasure on Rd. Also,
by otherwise using approximation, we can assume that the closed convex sets A and B have finitely many extreme points,
and that C and D are finitely generated closed convex cones. Suppose that

A = conv{a1, . . . , am}, B = conv{b1, . . . , bn},
C = cone{c1, . . . , cr}, D = cone{d1, . . . , ds},

where c1, . . . , cr , d1, . . . , ds are unit vectors. By Minkowski–Weyl Theorem, C◦ is also finitely generated. So we assume

C◦
= cone{c◦

1 , . . . , c
◦

t },

where c◦

1 , . . . , c
◦
t are unit vectors. Because C is a closed convex cone, we have (C◦)◦ = C . Thus, we have

C =

x ∈ Rd

|

c◦

j , x

≤ 0, 1 ≤ j ≤ t


, (1)

C◦
=


x ∈ Rd

| ⟨ci, x⟩ ≤ 0, 1 ≤ i ≤ r

. (2)

Since

A + C = conv{a1, . . . , am} + cone{c1, . . . , cr}

=


x ∈ Rd

| x =

m
j=1

αjaj +
r

i=1

γici : α1 ≥ 0, . . . , αm ≥ 0,
m
j=1

αj = 1, γ1 ≥ 0, . . . , γr ≥ 0


,

if we let

P :=


(x, z) ∈ Rd+1

| x =

m
j=1

αjaj +
r

i=1

γici, z =

m
j=1

αj : α1 ≥ 0, . . . , αm ≥ 0, γ1 ≥ 0, . . . , γr ≥ 0


= cone{(a1, 1), . . . , (am, 1), (c1, 0), . . . , (cr , 0)},

then,

A + C =

x ∈ Rd

| (x, 1) ∈ P

. (3)

By Minkowski–Weyl theorem, P◦ is finitely generated. So, we can assume

P◦
= cone{(w1, λ1), (w2, λ2), . . . , (wk, λk)},

where w1, . . . , wk are unit vectors in Rd, and λ1, . . . , λk are real numbers. Since the vectors w1, . . . , wk must satisfy
(ci, 0), (wj, λj)


≤ 0, 1 ≤ i ≤ r, 1 ≤ j ≤ k,

we have
ci, wj


≤ 0, 1 ≤ i ≤ r, 1 ≤ j ≤ k.

Thus, by the definition of C◦, we have wj ∈ C◦ for all 1 ≤ j ≤ k. Since D ⊇ C◦, we have wj ∈ D for 1 ≤ j ≤ k.
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