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a b s t r a c t

Based on covariate balancing propensity score (CBPS), improved estimators for the regres-
sion coefficients and population mean of linear models are obtained, when the responses
aremissing at random. It is proved that the proposed estimators are asymptotically normal.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Missing data is frequently encountered in statistical studies, and ignoring it could lead to biased estimation andmislead-
ing conclusions. Inverse probability weighting (Horvitz and Thompson, 1952) and imputation are two main methods for
dealing withmissing data. Since Scharfstein et al. (1999) noted that the augmented inverse probability weighted (AIPW) es-
timator in Robins and Rotnitzky (1994) was double-robust, authors have proposedmany estimators with the double-robust
property, see Tan (2006), Kang and Schafer (2007) and Cao et al. (2009). The estimator is doubly robust in the sense that
consistent estimation can be obtained if either the outcome regression model or the propensity score model is correctly
specified. In this paper, we make use of AIPWmethod to consider the linear model:

Y = XTβ + ν0(X)ε, (1)

where Y is a scalar response variate, β is a p × 1 vector of unknown regression parameter, ν0(·) is a strictly positive
known function and ε is a random statistical error with E[ε|X] = 0. Throughout this paper, we assume that X ′s are
observed completely, Y ismissing at random (Rubin, 1976). Thus, the data actually observed are independent and identically
distributed (δiYi, δi, Xi)(i = 1, . . . , n), where δi = 1 indicates that Yi is observed and δi = 0 indicates that Yi is
missing. The missing at random (MAR) assumption implies that δ and Y are conditionally independent given X , that is,
P(δ = 1|X, Y ) = P(δ = 1|X) ≡ π(X). This probability is called the propensity score (Rosenbaum and Rubin, 1983).
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The linear models with missing data have been studied in existing papers, such asWang and Rao (2002), Xue (2009), Qin
and Lei (2010) and so on. The inverse probability weighted imputation methods of Xue (2009) and other papers are based
on the nonparametric estimators of the propensity score model. However, it is well known that it is difficult to obtain the
nonparametric estimators because of the ‘‘curse of dimensionality’’. In addition, as mentioned in Kang and Schafer (2007),
although the AIPW estimators are doubly robust, they can be biased when both models are misspecified.

In this paper, we construct estimators for β and µ, based on the covariate balancing propensity score (CBPS) method
proposed by Imai and Ratkovic (2014), inwhich theymade use of CBPS to estimate the average treatment in causal inference
setting. Because the estimation of the average treatment effect can be treated as a two-sample missing data problem, we
borrow the idea of Imai and Ratkovic (2014) to study the problems of missing data. To the best of our knowledge, in the
case of missing data, there is no research based on CBPS. As mentioned in Imai and Ratkovic (2015), the weights based on
CBPS are robust in the sense that they improve covariate balance even when propensity score model is misspecified. So our
estimators based on CBPS are improved due to the robust weights and ourmethod has the followingmerits: (1) it avoids the
‘‘curse of dimensionality’’ and selection of optimal bandwidth; (2) it improves performance of the usual AIPW estimators in
terms of bias, standard deviation (SD) and mean-squared error (MSE), especially when both outcome regression model and
propensity score model are misspecified.

The rest of this paper is organized as follows. In Section 2, based on CBPS and AIPW methods, the estimators for the
parameter β and the population mean µ are proposed, and the asymptotic properties of the estimators are investigated.
In Section 3, simulation studies are carried out to assess the performance of the proposed method. In Section 4, concluding
remarks are made. In the Appendix, the proofs of the main results are given.

2. Construction of estimators

In this paper, we adopt the most popular choice of π(X) and posit a logistic regression model for it:

π(X) =
exp(XTα)

1 + exp(XTα)
, (2)

where α ∈ Θ is P-dimensional unknown column vector parameter.

2.1. CBPS-based estimator for the propensity score

It is necessary to estimate α of the propensity score before we construct estimators for β and µ. Based on (δi, Xi) (i =

1, . . . , n), the usual method estimates α by the maximum binomial likelihood estimator α̂ which maximizes the log-
likelihood function:

L =

n
i=1

[δi log{π(Xi, α)} + (1 − δi) log{1 − π(Xi, α)}] . (3)

Assuming that π(X, α) is twice continuously differentiable with respect to α, so maximizing (3) implies the first-order
condition

1
n

n
i=1

s(δi, Xi, α) = 0, s(δi, Xi, α) =
(δi − π(Xi, α))π ′(Xi, α)

π(Xi, α)(1 − π(Xi, α))
, (4)

where π ′(Xi, α) = ∂π(Xi, α)/∂αT . However, the main drawback of this standard method is that π(X) may be misspecified,
yielding biased estimators for the parameters β andµ. To overcome the drawback, we borrow the ideas of Imai and Ratkovic
(2014). We operationalize the covariate balancing property by using inverse propensity score weighting

E


δiXi

π(Xi, α)
−

(1 − δi)Xi

1 − π(Xi, α)


= 0. (5)

Eq. (5) ensures that the first moment of each covariate is balanced and the weights based on CBPS are robust even when
propensity scoremodel is misspecified. The key idea behind the CBPS is that propensity scoremodel determines themissing
mechanism and covariate balancing weights, see Imai and Ratkovic (2014). The sample analogue of the covariate balancing
moment condition given in Eq. (5) is

1
n

n
i=1

w(δi, Xi, α)Xi = 0, w(δi, Xi, α) =
δi − π(Xi, α)

π(Xi, α)(1 − π(Xi, α))
. (6)

According to Imai and Ratkovic (2014), the CBPS is said to be just identified when the number of moment conditions equals
that of parameters. If we use the covariate balancing conditions given in Eq. (6) alone, the CBPS is just-identified. If we
combine Eq. (6) with the score condition given in Eq. (4), then the CBPS is overidentified because the number of moment
conditions exceeds that of parameters.
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