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a b s t r a c t

We analyze a mathematical model of a cognitive radio network introduced in Yemini et al.
(2016). Our analysis reveals several surprising features of the model. We explain some of
these features using ideas from percolation theory and stochastic geometry.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Percolation on the standard disc graph (Gilbert’s disc model) has been a well-studied topic since the seminal work of
Gilbert (1961). It has applications in wireless ad hoc or sensor networks (Haenggi, 2012), where it is assumed that the
network is composed of a single class of transceivers with a fixed transmission radius. In an important emerging class of
networks, the so-called cognitive networks, however, there exist two classes of transceivers, where the so-called secondary
users are only allowed to be active if they are not too close to any of the primary users (Lee and Haenggi, 2012). In these
networks, the primary users are allowed unrestricted access to their licensed radio spectrum, while the secondary users
are prohibited from causing harmful interference to the primary users, i.e., they need to respect a guard zone around the
primary users.

We focus on percolation in the network formed by the secondary users. Assuming that primary and secondary users form
independent Poisson point processes, the subset of secondary users who are allowed to be active is a Poisson hole process,
since the guard zones around the primary users create holes in the point process of active secondary users. This point process
was introduced in Lee and Haenggi (2012) and further studied in Yazdanshenasan et al. (2016).

The problem of joint percolation in both the primary and secondary networks was proposed and studied in Yemini et al.
(2016a,b). Ourmain contribution in this paper is threefold. First, we introduce a re-parametrization of the problem, reducing
the number of parameters from the five in Yemini et al. (2016a,b) to three. This enables us to summarize the behavior of
the full model in a single plot, from which one can easily read off information about the original model. Second, we present
simulation results on the critical radius for the existence of a left–right crossing, which approximates the critical radius
for percolation; we also indicate the necessary steps towards a better approximation of the latter parameter. Finally, these
simulation results, shown in Fig. 1, suggest severalmathematical results on the dependence of the critical radius on the other
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parameters of the model. We state these results, together with sketches of some of their proofs, in the last main section.
Rigorous proofs will appear in a forthcoming paper.

2. Mathematical background

We will use several facts and methods from continuum percolation. Most of these relate to the Gilbert graph, which was
first defined and studied in Gilbert (1961), and we include a brief description of that model here. We also provide a short
explanation of the methods that have been used to study the model, some of which were used in Yemini et al. (2016a,b),
and some of which we will use ourselves. For more information, and rigorous proofs, the reader is encouraged to consult
the books by Meester and Roy (1996), Penrose (2003), Bollobás and Riordan (2006), Haenggi (2012), and the survey article
by Balister et al. (2009).

In Gilbert’s model, we start with a Poisson process P of intensity one in the plane. These points form the vertices of an
infinite graph Gr . The edges of Gr are obtained by joining two points ofP if they lie at (Euclidean) distance less than r , where
r is a fixed parameter.

The main quantity of interest for the Gilbert model is the critical radius for percolation. To define this, imagine fixing P
and slowly increasing r , starting from r = 0. Initially, the graph Gr will consist of small components, whose vertices happen
to lie close together, and isolated vertices. (Here, we use standard graph-theoretic terminology, so that a component, by
definition, means a connected component.) As we increase r , these components will grow and merge, and at some point an
infinite component I , containing a positive fraction θ(r) > 0 of all the vertices in Gr , will appear. When this happens, we
say that percolation occurs, or that the model Gr percolates. The fraction θ(r) of vertices in I can also be interpreted as the
probability that a fixed vertex of Gr belongs to I , and, as r increases, θ(r) will naturally increase towards 1.

From a rigorous mathematical perspective, Kolmogorov’s 0–1 law on tail events implies that, for any fixed value of r ,
the probability that Gr percolates (and also θ(r) > 0) is either zero or one. In other words, if we consider several different
instances of P , and simultaneously increase r in each of them, at the same rate, then percolation occurs at the same time in
each instance. Consequently, if we define rcrit as

rcrit = sup{r : θ(r) = 0},

then, for r < rcrit, Gr does not percolate (almost surely), and, for r > rcrit, Gr percolates (again, almost surely, i.e., with
probability 1). As it happens, when r = rcrit, Gr does not percolate; this was established in Alexander (1996).

Given this, the next step is to obtain good bounds on rcrit. Currently the best known rigorous bounds, due to Hall (1985),
are

0.833 < rcrit < 1.836.

These bounds are only slight improvements of Gilbert’s original bounds from 1961, and were obtained using refinements of
Gilbert’s original methods. The lower bounds were obtained using branching processes, while the upper bounds come from
comparison with a lattice percolation model, specifically, face percolation on a hexagonal lattice. More recently, Balister
et al. (2005) used dependent percolation to show that, with confidence 99.99%,

1.1978 < rcrit < 1.1989.

(In detail, Balister et al. showed that, subject to a certain bound on a certain multidimensional integral, the stated bounds
on rcrit hold; the integral itself was estimated using Monte Carlo methods, resulting in the stated confidence level.)

For more complicated models, such as the secrecy graphmodel (Sarkar and Haenggi, 2013), and the model considered in
Yemini et al. (2016a,b), comparisonwith (dependent or independent) lattice percolation remains themain tool for bounding
the various thresholds (indeed, it is used extensively in Yemini et al., 2016a,b). These comparisons work by superimposing
an appropriately-sized lattice on the plane, and declaring a face F of the lattice ‘‘open’’ if F contains a point ofP . If the lattice
spacing has been chosen correctly, then face percolation in the lattice implies percolation in the originalmodel. Therefore,we
can use classical bounds for lattice percolation thresholds to deduce that percolation occurs in the original model, for certain
parameter values. Themethod can also be used to show that, for certain other parameter values, percolation does not occur;
occasionally, one has to use dependent percolation to make the comparisons work, and this usually results in very weak
bounds. Recent innovations include the rolling ball method of Balister and Bollobás (2016), and the high confidence method
introduced in Balister et al. (2005), referred to above. Both these newer methods can also be adapted to other models; for
instance they were used in Sarkar and Haenggi (2013) to study the secrecy graph.

The Gilbert model is primarily a model of a random geometric graph. However, there is a related coverage process, which
we will make heavy use of in this paper. To define this coverage process Cr , known as the Gilbert disc model, we start with a
unit-intensity Poisson process P as before, but this time we place an open disc B(p, r) of radius r around each point p ∈ P .
The connection between theGilbert discmodel and theGilbert graphGr is that graph-theoretic components inGr correspond
exactly to topological components ofCr/2. IfCr/2 has an infinite (topological) component, we extend our earlier terminology
by saying that Cr/2 percolates, which, by the above, occurs if and only if Gr percolates as well.

There are several quantities related to the Gilbert disc model which can be conveniently expressed in terms of the
connection radius r . First, there is the average coverage level αr = πr2, which represents both the average number of times
a point of R2 is covered by Cr and also the average degree in Gr . Then there is the reduced coverage level α′

r = αr/2 = αr/4,
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