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a b s t r a c t

In this paper, we investigate the problem of testing nonparametric function in partial linear
errors-in-variablesmodels with responsemissing at random. In order to overcome the bias
produced bymeasurement errors, two bias-corrected test statistics based on the quadratic
conditional moment method are proposed. The limiting null distributions of the test
statistics are established respectively and p values can be easily determined which show
that the proposed test statistics have similar theoretical properties. Moreover, our tests
can detect the alternatives distinct from the null hypothesis at the optimal nonparametric
rate for local smoothing-based methods in this area. Simulation studies are conducted to
demonstrate the performance of the proposed test methods and the proposed two tests
give similar performances. A real data set from the ACTG 175 study is used for illustrating
the proposed test methods.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Partial linear regressionmodel (PLM) first introducedbyEngle et al. (1986) can reducehigh risk ofmisspecification related
to a fully parametric model and avoid some serious drawbacks of fully nonparametric methods. In general, a partially linear
or semiparametric regression model can be written as

Y = X τβ + g(T ) + ε, (1.1)

where Y is the response, X ∈ Rp and T ∈ R are explanatory variables, β = (β1, . . . , βp)
τ is an unknown p-dimensional

parameter vector, g(·) is an unknown smooth function defined on R and ε is the model error with E(ε|X, T ) = 0.
It is well known thatmissing data are often encountered for various reasons such as unwillingness of some sampled units

to supply the desired information, loss of information caused by uncontrollable factors, failure on the part of the investigator
to gather correct information when the explanatory variables can be controlled. Many statisticians have investigated
statistical inferencewithmissing data. For example,Wang and Rao (2002), Zou et al. (2015) and Chown (2016) for estimation
and Sun et al. (2009), Xu and Zhu (2013), Xu et al. (2017) and Cotos-Yáñez et al. (2016) for hypothesis testing. Hence, we
assume the response Y is missing at random (MAR), and let δ = 0 if Y is missing and δ = 1 otherwise. The MAR assumption
implies that δ and Y are conditionally independent given X and T , i.e., P(δ = 1|X, T , Y ) = P(δ = 1|X, T ) = ∆(X, T ), where
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∆(X, T ) is called the propensity score or selection probability function representing the heterogeneity in the missingness
mechanism. Further we define ∆t(T ) = P(δ = 1|T ).

Inmany practical fields, wemay encounter the situation that the covariates aremeasuredwith errors. For example, it has
been well documented that covariates such as blood pressure, urinary sodium chloride level, and exposure to pollutants are
subject to measurement errors, and these cause difficulties in conducting a statistical analysis that involves them. Simply
ignoring measurement errors will result in biased estimators. The measurement errors (or errors-in-variables, EV) models
have been surveyed by lots of researchers, such as Fuller (1987), Carroll et al. (1995), Liang et al. (1999), Wang (1999), You
et al. (2006), Fan et al. (2013), Feng and Xue (2014), Sun et al. (2015), Fan et al. (2016) and De Nadai and Lewbel (2016)
among others. However, the above mentioned EV models mainly discussed estimation problems. There are few EV models
related to hypothesis test issues especially for missing response.

In this paper, we assume the covariate X in model (1.1) is measured with additive error and one can only observe the
surrogate variableW . The response Y is assumed to be MAR, i.e., δ and Y are conditionally independent givenW and T and
P(δ = 1|W , T , Y ) = P(δ = 1|W , T ) = ∆(W , T ). Specifically, we consider the following partial linear errors-in-variables
model (PLEVM),

Y = X τβ + g(T ) + ε,
W = X + η,

(1.2)

where η is the measurement error, which is independent and identically distributed (i.i.d.) with mean zero and known
covariance matrix Ση , and is independent of (X, T , ε). Our aim is to test whether the nonparametric part in (1.2) is a
parametric function:

H0 : g(T ) = G(T , θ0) for some θ = θ0 vs. H1 : g(T ) ≠ G(T , θ) for any θ, (1.3)

where G(·, θ) is a known function form. Since the measurement errors often make the estimator have bias, a bias-corrected
estimation method is proposed. Then inspired by Zheng (1996), we introduce two quadratic conditional moment test
statistics to test the testing problem (1.3). Our results show that the proposed two tests behave similarly in theoretical
and numerical analysis.

The rest of the paper is organized as follows. Section 2 constructs two test statistics and establishes asymptotic properties
of test statistics under the null hypothesis and local alternatives. Simulation studies and a real data analysis are carried out
to reveal the performances of the tests in Section 3. The technical proofs are relegated to Appendix.

2. Test procedures

2.1. Bias-corrected estimation

Suppose that {(yi, δi, xi, wi, ti), 1 ≤ i ≤ n} is an i.i.d. random sample which comes from (Y , δ, X,W , T ). For model (1.1),
under the MAR assumption, Niu et al. (2016) adopted the following estimator β̃N to estimate β , i.e.,

β̃N =

 n
i=1

δi(xi − g̃1(ti))(xi − g̃1(ti))τ
−1 n

i=1

δi(xi − g̃1(ti))(yi − ĝ2(ti)), (2.1)

where

g̃1(ti) =

n
j=1

δjxjKh(ti − tj)

n
j=1

δjKh(ti − tj)
and ĝ2(ti) =

n
j=1

δjyjKh(ti − tj)

n
j=1

δjKh(ti − tj)

are the nonparametric estimators of g1(ti) =
E(δixi|ti)
E(δi|ti)

and g2(ti) =
E(δiyi|ti)
E(δi|ti)

, respectively for i = 1, . . . , n. Here Kh(·) =

K(·/h)/h, K(·) is a kernel function and h is a sequence of positive numbers tending to zero, called bandwidth.
However, in our case, instead of observing xi, we observe its surrogatewi withwi = xi+ηi, for i = 1, . . . , n. If one ignores

themeasurement error and replaces xi bywi directly, the resulting estimator is inconsistent and biased. Considering for this,
we introduce a bias-corrected estimator β̂ to estimate β as follows.

β̂ =

 n
i=1

δi(wi − ĝ1(ti))(wi − ĝ1(ti))τ − Ση

n
i=1

δi

−1 n
i=1

δi(wi − ĝ1(ti))(yi − ĝ2(ti)), (2.2)

where ĝ1(ti) has the same form as g̃1(ti) except that xj are replaced by wj.
In order to estimate θ , we note that under the null hypothesis,

G(T , θ) = E
δ(Y − X τβ)

∆t(T )

T
= E

δ(Y − W τβ)

∆t(T )

T
. (2.3)
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