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a b s t r a c t

We show in this work that the Asymptotic Numerical Method (ANM) combined with the Method of

Fundamental Solution (MFS) can be a robust algorithm to solve the nonlinear Poisson problem. The ANM

transforms the nonlinear problem into a sequence of linear ones which can be solved by MFS. This last

method consists of approximating the solution of the linear Poisson problem by a linear combination of

fundamental solutions. Some examples are presented to show the efficiency of the proposed method.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A few decades ago we have shown the efficiency of the ANM to
compute the solution of nonlinear partial differential equations.
Many applications have established the robustness of this method
for nonlinear problems in solid and fluid mechanics, nonlinear
vibrations, contact, large displacement and rotations, plasticity and
other fields in physics [1–14].

ANM consists in computing the solution into power series with
respect to a scalar parameter. This allows one to transform the
nonlinear problem into a sequence of linear ones which have the
same tangent operator. Consequently only one tangent matrix
triangulation is needed to compute all the terms of the series. As the
series have a limited convergence radius, the technique of Padé
approximants is used to improve the validity range of the solution
[7,8]. Up to now, ANM is generally associated to Finite Element
Method to solve the resulting linear problems.

In recent years, there have been increasing interests in using
meshfree techniques which aim to avoid the meshing restrictions
encountered in the classical Finite Element Method. Several
techniques have been proposed, but here, we are particularly
interested in the so called Method of Fundamental Solutions
(MFS) for the simplicity of its numerical implementation.

The main idea of this method consists of approximating the
solution of the problem by a linear combination of fundamental
solutions with respect to some source points which are located

outside the domain. Then, the original problem is reduced to
determining the unknown coefficients of the fundamental solu-
tions by requiring the approximation to satisfy the boundary
conditions.

MFS was first proposed by Kupradze and Aleksidze [15] and has
been applied to many physical problems represented by linear
differential equations, such as Laplace equation, Poisson’s equation,
eigenvalue problem, Helmholtz equation, Stokes equations, inverse
problems, plate bending problems, etc. [16–26]. This method has
been extended to solve some nonlinear problems [27-32]. It was
mainly combined with iterative methods as Newton–Raphson
method, Picard iteration [19,20] or concept of a matrix particular
solution [22]. The association of MFS and ELM (Eulerian–Lagragian
method) has been used to deal with nonlinear problems success-
fully, such as advection–diffusion equations [28], Burgers’ equation
and Navier–Stokes equations [29,30]. The Trefftz method and MFS
have been intensively investigated by Balakrishnan and Rama-
chandran [22,23] for nonlinear problems in heat and mass transfer.

Many methods have been proposed in the last decade to
improve MFS. In these papers, a key point is the introduction of
various shape functions to discretize the considered linear pro-
blems. The Analog Equation Method (AEM) [21,31,40] allows
solving linear equations even if a fundamental solution is not
known, what is of high interest when dealing with nonlinear
equations. The idea is to use shape functions that are solutions of
another ‘‘analog’’ equation, but it is no longer a boundary-only
technique as MFS. There are other interesting principles to create
other shape functions, for instance by starting from Helmholtz
operator instead of Laplacian or by finding a family of linear
operators whose combination cancels the right hand side: this
has led to the boundary knot method [34] and the boundary
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particle method [37,38] that are in nature meshfree and boundary-
only. It has also been proposed to define shape functions by Taylor
series computed from the differential equation [31]. Likely the
present ANM study could be extended by considering all these
discretization techniques: indeed ANM is a generic procedure to
transform a nonlinear problem into a family of linear ones and it
works more or less independently of the discretization principle.

In the present work, the idea is to show that the association of ANM
and MFS allows us to obtain an efficient algorithm to solve nonlinear
Poisson problems. So we propose to solve the following problem

�Duþu3 ¼ lf ð1:1Þ

with the Dirichlet boundary conditions

u¼ lg ð1:2Þ

where u is the unknown variable, l a scalar parameter, f and g are
given. The nonlinear terms of (1.1) can be chosen in more complicated
forms; see the following contributions of ANM to solve problems
involving strong nonlinearities [8–11].

The layout of this paper is as follows. In Section 2, we present the
perturbation technique that transforms the nonlinear Eq. (1.1) into
a sequence of linear Poisson problems. In Section 3, we show how to
solve the resulting linear Poisson problems using MFS. In Section 4,
we present some numerical results.

2. Perturbation technique

We aim to solve the nonlinear problems (1.1) and (1.2) by using
the Asymptotic Numerical Method (ANM) which consists in asso-
ciating a perturbation technique with a discretization method. The
basic idea of ANM is first to set the problem to be solved into a
quadratic form which is convenient to make easy the recurrence
formulae, to expand the variables into power series and then to solve
the resulting linear problems by a numerical procedure [2]. Assume
that the nonlinear problem can be written in the following form:

RðU,lÞ ¼ LðUÞþQ ðU,UÞ�lF ¼ 0 ð2:1Þ

where R is the so-called residual vector, L and Q are a linear and a
quadratic operators, F is a given vector and l is a scalar parameter.
The mixed vector U can hold several variables according to the
considered problem. Next the variables (U,l) are expanded into
power series with respect to a path parameter ‘‘a’’:

UðaÞ�U0 ¼
XN

i ¼ 1

aiUi, lðaÞ�l0 ¼
XN

i ¼ 1

aili ð2:2Þ

where (U0,l0) is a starting solution point and ‘‘N’’ is the truncation
order which can be very large. Substituting (2.2) into (2.1) leads to a
sequence of linear problems admitting the same tangent operator.
One obtains for a given order ‘‘p’’

LtðUpÞ ¼ lpFþFnl
p ð2:3Þ

where Ltð:Þ ¼ Lð:Þþ2Q ðU0,:Þis the tangent operator computed at the
starting point (U0,l0). At each order, the linear problem (2.3) is
associated with a new right hand side term:

Fnl
p ¼�

Xp�1

i ¼ 1

Q ðUi,Up�iÞ ð2:4Þ

These latter involve only a simple sum thanks to the quadratic
framework of (2.1). Note that for order 1, the right hand side term Fnl

1 is
zero. To improve the validity range of the solution, the polynomial
approximation (2.2) is replaced by Padé approximants [7,8]:

UðaÞ�U0 ¼
XN

i ¼ 1

PadiðaÞa
iUi, lðaÞ�l0 ¼

XN

i ¼ 1

PadiðaÞa
ili ð2:5Þ

where PadiðaÞ are rational fractions with the same denominator. Padé
approximants are now commonly used because of their robustness
and their low overhead in computing time.

It seems to be easy to adapt Eq. (1.1) to a quadratic form. One
adds a new variable ~u ¼ u2 to set the problem into the following
form:

�Duþu ~u ¼ lf in O
~u ¼ u2 in O
u¼ lg over @O

8><
>: ð2:6Þ

In this case, the vectors U, F and the operators L, Q are defined as

U ¼
u

~u

� �
, F ¼

f

0

� �
, L¼

�Du

~u

� �
, Q ðU,UÞ ¼

u ~u

�u2

� �
ð2:7Þ

Many choices are possible for the expansion parameter ‘‘a’’. We
propose here to choose a¼ l�l0 and to start from ðU0,l0Þ¼(0, 0).
This leads to the following linear problems with Lt ¼ L¼�D:

For order 1 :

�Du1 ¼ f in O
~u1 ¼ 0 in O
u1 ¼ g over @O

8><
>: ð2:8Þ

For order 2:

�Du2 ¼ 0 in O
~u2 ¼ u2

1 in O
u2 ¼ 0 over @O

8><
>: ð2:9Þ

For order k42 :

�Duk ¼�
Pk�1

i ¼ 1 ui ~uk�1 in O
~uk ¼

Pk�1
i ¼ 1 uiuk�1 in O

uk ¼ 0 over @O

8>><
>>: ð2:10Þ

Note that for all these problems only the right hand side terms
change. Classically, ANM associates the perturbation technique to
Finite Element Method (FEM) to solve the resulting linear problems
(2.10). Its effectiveness has been proven for many problems
involving moderate or strong nonlinearities [6,9–13].

Many truncation orders can be chosen within ANM, depending
on the physical problem, the number of degrees of freedom and the
accuracy required by the user. Of course the domain of validity of
the asymptotic solution is always smaller than the radius of
convergence and it is generally rather large, say 60–80% of the
radius of convergence for an order between 15 and 20. If Padé
approximants are considered, the domain of validity is often larger
and can be extended beyond the radius of convergence. For large
scale problems involving thousands or millions of degrees of
freedom, the truncation order can be chosen by considering the
computational cost: an order of 15–20 is often optimal for small
problems (�104 dof), but larger orders (say 50) can be better for
larger problems (�106 dof) as illustrated in [41]. In the present
paper, we only study very small problems and the computational
cost is negligible. The truncation order will be re-discussed in
Section 4, only with a view to maximize the domain of validity of
the asymptotic solution. For more details about this discussion,
refer to [3–5,8,41].

In the present paper, we show that ANM can be easily applied
using MFS instead of FEM to solve the sequence of linear problems
(2.10). The main idea of MFS is detailed in the next section.

3. Method of fundamental solution

In this section, we propose to solve by MFS the linear Poisson
problems (2.8)–(2.10). Since the terms f ~uigi ¼ 1,k of the additional
variable ~u are known, these linear problems can be set into the
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