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a b s t r a c t

Baffle problems, i.e. radiation problems from objects mounted behind a hole of an infinite hard reflecting

wall, can be simulated as a multi domain problem consisting of a finite interior domain around the object,

and two infinite half spaces in front and behind the baffle plane. A formulation of such problems is

presented in the context of the Burton–Miller boundary element method. Additionally, the coupling of the

acoustic boundary element method and the structural finite element method in the context of the Burton–

Miller-formulation of the baffle problem is discussed.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

It is well-known, that for certain critical frequencies the integral
representation formula for an exterior Helmholtz problem does not
have a unique solution. The CHIEF-point method presented by
Schenck [1] is widely used to guarantee a unique solution also at
these irregular frequencies. However, particularly at higher fre-
quencies, it is difficult to select appropriate CHIEF-points, because
they must not be located near the nodal surfaces of an associated
eigenvalue problem which are unknown (see also [2–4]). Moreover,
the large condition number of the coefficient matrix, which is
caused by improperly selected CHIEF-points, makes the application
of iterative solvers almost impossible. However, for large scale
problems, especially when fast numerical methods such as the fast
multipole method [3,5–11] are used, iterative solvers are preferred
or even inevitable, thus a high condition number caused by badly
selected CHIEF points should be avoided. The Burton–Miller
method [12] is free from the above difficulties. In [13] an algorithm
for a symmetric Galerkin-type boundary element method (BEM)
with CHIEF-points was formulated. Based on the equations derived
in that work, we formulate equations for a Burton–Miller BEM for
acoustic radiation and scattering in a similar manner.

The baffle problem, i.e. the acoustic radiation problem including
an apparatus mounted behind a hole of a large, hard reflecting wall,
is of practical importance for developing electrical devices such as
high frequency loudspeakers. To simulate the reflections from the

baffle, the baffle can be discretized directly, but this approach is not
efficient, because the baffle is generally seen as being infinitely
large compared to the apparatus. Alternatively, in our approach an
interface that encloses the considered apparatus is chosen, so that
the whole space is subdivided into three domains: a finite one
around the apparatus and the hole in the baffle, and two infinite
ones in front and behind the baffle, respectively (see Fig. 1). The
three-domain approach was chosen to correctly model situations,
when the apparatus is mounted behind a hole in the baffle. The
apparatus may lie partly in front of the baffle and partly behind it.
The advantage of our approach is that only the interface and the
surface of the apparatus need to discretized, but not the baffle itself.
Thus the dimension of the problem can be reduced drastically
compared to the direct method. Multi domain approaches were
already used for coupled interior/exterior acoustic problems (see
for example [14]) or for modeling seismic wave propagation [15].

In Section 2, we derive the boundary integral equations (BIE) for
baffle problems in the context of the Burton–Miller BEM and derive
the linear system of equations. Naturally, the boundary integral
equations for problems without baffle can be seen as a special case
of that for the baffle problem. In Section 3, the coupling between the
Burton–Miller BEM for the baffle problem and the structural finite
element method (FEM) will be treated using the similar approach
as in [16,17]. In Section 4, results for three examples are shown.
In the first example, a baffle problem is solved using the direct
method (i.e. direct discretization of a large part of the baffle) and
the indirect method (i.e. using a multi domain model without
discretization of the baffle itself). The second example shows the
results for the sound radiation from a high frequency loudspeaker
mounted on a baffle. The third example is the simulation of sound

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/enganabound

Engineering Analysis with Boundary Elements

0955-7997/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.enganabound.2010.11.004

� Corresponding author. Tel.: +43 1515812518; fax: +43 1515812530.

E-mail address: wolfgang.kreuzer@oeaw.ac.at (W. Kreuzer).

Engineering Analysis with Boundary Elements 35 (2011) 279–288

www.elsevier.com/locate/enganabound
dx.doi.org/10.1016/j.enganabound.2010.11.004
mailto:wolfgang.kreuzer@oeaw.ac.at
dx.doi.org/10.1016/j.enganabound.2010.11.004


reflection from a closed surface discretized with surface elements.
To show that the Burton–Miller method can enhance the numerical
stability and accelerate the convergence of the iterative solver for
exterior and interior problems, an exterior problem as well as an
interior problem are treated.

The linear system of equations describing the system is solved
with an iterative solver. Because of the Burton Miller approach the
system is not symmetric anymore, as iterative solver we use a
conjugate gradient squared method (CGS) [18]. Although it was
shown in [19,20] that the BiCGStab2 solver has some robustness
advantage over the CGS method, we found in our experience, that
the CGS solver with an incomplete LU-decomposition as precondi-
tioner has a good balance between stability and efficiency, and is
therefore used in our code. For further discussion of iterative
solvers for BEM problems please refer to [19,21,22].

2. The boundary integral equations for acoustic problems
under consideration of a baffle

The basic equation for acoustic problems in the frequency
domain is the Helmholtz equation

r
2fþk2f¼ 0, ð1Þ

with f denoting the velocity potential and k¼o=c denoting the
wave number (o and c are the angular frequency and the sound
speed, respectively). The sound pressure is related to f by
p¼ iorf, with r being the density of the medium and i2

¼�1.
Here it is assumed, that the time factor is e�iot , otherwise
p¼�iorf. The baffle plane is assumed to be hard reflecting, the
radiating/reflecting objects are assumed to have sound-absorbing
properties modeled by an admittance boundary condition, i.e.

vðxÞ ¼
@fðxÞ
@n
¼ vradðxÞ�tAðxÞfðxÞ, xAS, ð2Þ

where AðxÞ ¼ ioraðxÞ is given by the admittance aðxÞ at a point x on
the boundary S, n is the normal vector to the surface of the structure
at point x, and vrad is given by the (possible) sound radiation of the
object modeled by a velocity boundary condition. The parameter t
depends on the direction of the normal vector to the surface
(see Fig. 1). If the normal vector points to the interior of the
radiating/reflecting object, t :¼ �1, otherwise t :¼ 1. In Fig. 1, a
three-domain baffle problem is depicted. The full domain is
subdivided by an artificial interface S3 ¼ Sf

3 [ Sb
3 (interface part in

front of the baffle and the interface part behind the baffle) into the
sub-domains O1, O2 and O3. O1 is a bounded domain where the
radiating apparatus and the hole in the baffle are located;O2 andO3

are two semi infinite domains in front and behind the baffle. S1 and
S1u denote the surfaces of radiating or reflecting objects in O1 and
O2, respectively. S2 and S2u are thin-walled structural elements
(middle face elements). The interface S3 will be discretized with

special elements to guarantee the continuity of sound pressure and
normal particle velocity across the interface. A part of the baffle can
be in O1, this part has to be modeled by middle face elements, i.e.
elements in S2. In O2 and O3, the baffle is modeled by considering
both domains as hard reflecting infinite half spaces and using the
appropriate fundamental solution for the Helmholtz equation in
such spaces. Thus the baffle does not have to be discretize in these
half spaces. We assume, that O2 may contain reflecting objects,
whereas in O3 no objects may be given. Please note, that this
restriction is only made, because in most real life applications (like
for example high frequency loudspeakers) there are no objects
located in O3. The problem in the domain O1 is defined as an
interior problem, and the normal vector to the surface S1 must point
to the interior of the object (that is an convention made in [13] to
ensure that the direction of the normal vectors to the interface S3

match when the domains are coupled); please note that O1 is the
domain between the artificial boundary S3 and the radiating object.
In the domainO2, the normal vector to S1u must point to the exterior
of the radiating/reflecting object, because the problem is defined as
an exterior problem there. The direction of the normal vector to
thin elements is arbitrary, and it is used to define the positive and
negative sides of S2 and S2u . If a part of the apparatus behind the
baffle closes the baffle (for example a cabinet behind the baffle, see
Fig. 2), and the elements of this closure can be modeled by surface
elements, these elements can be used to separate O1 from the
halfspace behind the baffle, i.e. the closure can be used instead of S3

b.
Since everything behind the baffle and the closure is not relevant
for the calculations anymore, the three-domain model can be
reduced to a two domain model.

In [13] the boundary integral equations of a Galerkin-BEM-
formulation for acoustic scattering for surface and thin-walled
structural elements was given. CHIEF-points were used to remove
the singularities of the system of equations at irregular frequencies.
The Burton–Miller formulation and the baffle problem were not
considered yet. Based on these equations, we derive a formulation
for a baffle problem in combination with the Burton–Miller
approach. First, we will derive the equations for points in the
closed domain, then for points in the half spaces. We then apply the
Burton Miller approach to these equations. Finally, we will derive
equations for points at the interface between the three domains.

2.1. BIE for the closed domain O1

We first take a look at O1, i.e. the region between the radiating
object and the interface S3, where the problem is defined as an
interior problem. Please note, that in the subsystem, points on the
interface boundary S3 can be treated the same way as points on
regular surface elements S1. The boundary integral equations are
given by

�afðxÞþ
Z

S1

ðGðx,yÞAðyÞ�Hðx,yÞÞfðyÞ dSy

þ

Z
S2

ððGðx,yÞ ~AðyÞþHðx,yÞÞ ~fðyÞþGðx,yÞAðyÞfðyÞÞ dSy

Fig. 1. Schematic illustration of a three domain baffle problem.

Fig. 2. Schematic drawing of a two-domain baffle. The hole in the baffle is closed,

thus contributions from O3 are not relevant for calculations. The closure forms the

boundary ofO1 behind the baffle and has to be modeled with surface elements in S1.
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