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1. Introduction

Binary logistic regression is a frequently applied procedure used to predict the probability of occurrence for some binary
outcome using one or more continuous or categorical variables as predictors. The logistic model relates the probability of
occurrence P of the outcome counted by Y to the predictor variables X;, with the occurrence of an event normally indicated
by one and nonoccurrence by zero. The model takes the form

1
PY=1)= .
1+ exp[—(Bo + B1X1 + BoXo + - - + BiXi)]

The regression parameters are typically obtained using maximum likelihood estimation. Hosmer and Lemeshow (2000)
provide a detailed discussion of the goodness of fit of the logistic regression model, particularly the well-known and
commonly used Hosmer-Lemeshow goodness-of-fit test. When the predicted probabilities resulting from logistic regression
are for classification purposes, there is a need for additional indices of model fit. Known as pseudo-R? indices, these indices
play arole similar to R? in ordinary least squares (OLS) regression. Some indices, such as those formulated by Cragg and Uhler
(1970), McFadden (1974), Maddala (1983), Cox and Snell (1989), and Nagelkerke (1991) compare the likelihood functions
for an intercept-only and full model. In particular, the McFadden pseudo-R? is defined as follows:

5 log L(full)
Ryp=1— ———-.
log L(null)
McKelvey and Zavoina (1975) propose a pseudo-R? based on a latent model structure, where the binary outcome results

from discretizing a continuous latent variable relate to the predictors through a linear model. This pseudo-R? is then the
proportion of the variance of the latent variable explained by the covariate. Cameron and Windmeijer (1997) define yet
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another pseudo-R? index as the proportionate reduction in uncertainty, as measured by the Kullback-Leibler divergence,
given the inclusion of the regressors. Windmeijer (1995) and Smith and McKenna (2013) provide broad and detailed studies
of the different pseudo-R? indices available for binary choice models. Theoretical results regarding the convergence and
asymptotic normality of pseudo-R? indices are available in Hu et al. (2006).

It is worth mentioning that there does not exist an equivalent statistic to the classical R? coefficient in OLS regression
when analyzing data with a logistic regression. It is well known that estimates arrived at through an iterative process and
they are not computed to minimize variance, hence the OLS approach to goodness-of-fit does not apply. All previous indices
are called pseudo-R? because they look like the classical R? in the sense that they are on a similar scale, ranging from 0 to 1,
with higher values indicating better model fit.

Alternatively to pseudo-R? indices, there exist other exploratory methods for evaluating a logistic regression model. In
accordance with the usual interpretation of R? for linear models they try to capture the model’s ability to predict a single
observation. Mainly, those methods take into account the differences between observed and predicted outcomes and a good
model is defined when having a high explanatory power, i.e., a good prediction of an observation is only possible when the
success probability is close to 1 or 0. Among others, we first highlight the coefficient of discrimination de Tjur (2009). It
has a lot of intuitive appeal and the definition is very simple. For each of the two categories of the dependent variable is
computed the average of the estimated probabilities and then the difference between them is computed. Its interpretation
is based on the histograms of the empirical distributions of both the fitted values for the failures and the fitted values for
the successes. Intuitively, the greater is the difference, the better is the model. Secondly, it is also worth to mention some
indices based on the concept of concordance and discordance. Basically, concordance tells us the association between actual
values and the values fitted by the model in percentage terms, namely, we compute the number of pairs where the one
had a higher model score than the model score of zero and the opposite for discordance. Some examples are the classical
well-known Kendall’s tau, Goodman-Kruskal Gamma and Somers’ D (Somers, 1962). Finally, another valuable contribution
is given by the receiver operator characteristic (ROC) curve. The ROC curve represents “true positive” and “false positive”
classification rates as a function of different classification cutoff values for the predicted probabilities resulting from the
logistic regression. In literature, several indices of accuracy have been proposed to summarize ROC curves. In particular, the
area under the curve (AUC) index is one of the most commonly used, see, for instance, Hosmer and Lemeshow (2000), Metz
(1978) and Fawcett (2006) for a detailed explanation of the basic principles of ROC analysis. The AUC index is related to the
Somers’ D by the following relationship: Dyy = 2AUC — 1 (see Newson, 2002).

In this paper we propose a new exploratory index to measure the predictive power of a logistic regression model. From
a theoretical point of view, it is not a proper pseudo-R? index and analogously to other exploratory methods mentioned
before it is based on the differences between observed and predicted outcomes. This new index is based on the sensitivity of
the estimated binary logistic regression model. The term sensitivity within this context implies the quality of the model to
predict correctly the value of the dependent variable. Most statistical software packages provide, as a self-evaluation of the
estimated model, the number of individuals in the sample that the model predicts correctly as a function of the critical values
considered (the cutoff points). In other words, each cutoff point ¢, provides the percentage of sampled individuals observed
with values of one that the estimated model predicts correctly by assigning P[Y = 1] > c,. These values, which decrease
as ¢, increases, are the components of a vector we refer to as Sy, whose dimension is determined by the number of cutoff
points ¢,,, Cp,, - - -, Cp, considered. Associated with the vector we have a vector X; of the same dimension and of which
the components are the number of sampled individuals observed with values of one that the model predicts accurately
for each cutoff point ¢y, but inaccurately for ¢, (i : 1,...,n — 1). Likewise, self-evaluation of the model provides the
percentage of individuals of the sample observed with values of zero that the estimated model predicts correctly by assigning
P[Y = 1] < ¢,. These values, which decrease as ¢, decreases, are the components of a vector we refer to as Sp. In this case,
we consider the components of Sy in decreasing order. Associated with Sy, we have a vector Xy of which the components
are the number of individuals of the sample observed with values of zero that the model predicts accurately for each cutoff
point ¢,,, but inaccurately for ¢, .

To illustrate, consider a model estimated using a sample of 20 individuals observed with the value one and 10 individuals
observed with the value zero, and that we select deciles cg 1, Cg.2, . . . , Co.9 as cutoff points. Let us assume that S; and S, are:

S1=(1, 1, 0.95, 0.9, 0.8, 0.8, 0.7, 0.55, 0.35); So=(1, 1, 1, 0.9, 0.9, 0.9, 0.7, 0.6, 0.3).
The corresponding X; and X, vectors will then be:
X;=(0,0,1,1, 2,0, 2, 3,4, 7); Xo=(0,0,0 1,0,0, 2, 1, 3, 3).

We may interpret the components of S; and Sy, within a ROC curve context, in terms of sensitivity and specificity,
respectively. However, even though we have this common starting point derived from the ROC curve, we show later on
that there are substantial methodological differences. We intend to introduce the idea of sensitivity as applied to any vector
X(x;) € Rf.In the same way that there is a certain intuitive idea that the components of a vector X are “more nearly equal”
than the components of another vector Y, we can talk about a certain intuitive idea that the components of a vector X present
more sensitivity than the components of another vector Y.

Focus again on vector X; = (0, 0, 1, 1, 2, 0, 2, 3, 4, 7). We know that we can measure the inequality of the
components of X; via certain inequality measures, such as variance, where we consider the underlying dispersion, or the Gini
index, where the vector components correspond to income distribution. These measurements and any others corresponding
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