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a b s t r a c t

We propose a new explanatory index for evaluating the binary logistic regression model
based on the sensitivity of the estimated model. We previously formalized the idea of
sensitivity and established the principles a statistic should comply with to be considered a
sensitivity index. We apply the results to a practical example and compare the results with
those obtained utilizing other indices.

© 2016 Published by Elsevier B.V.

1. Introduction 1

Binary logistic regression is a frequently applied procedure used to predict the probability of occurrence for some binary 2

outcome using one or more continuous or categorical variables as predictors. The logistic model relates the probability of 3

occurrence P of the outcome counted by Y to the predictor variables Xi, with the occurrence of an event normally indicated 4

by one and nonoccurrence by zero. The model takes the form 5

P(Y = 1) =
1

1 + exp[−(β0 + β1X1 + β2X2 + · · · + βkXk)]
. 6

The regression parameters are typically obtained using maximum likelihood estimation. Hosmer and Lemeshow (2000) 7

provide a detailed discussion of the goodness of fit of the logistic regression model, particularly the well-known and 8

commonly usedHosmer–Lemeshowgoodness-of-fit test.When the predicted probabilities resulting from logistic regression 9

are for classification purposes, there is a need for additional indices of model fit. Known as pseudo-R2 indices, these indices 10

play a role similar to R2 in ordinary least squares (OLS) regression. Some indices, such as those formulated by Cragg andUhler 11

(1970), McFadden (1974), Maddala (1983), Cox and Snell (1989), and Nagelkerke (1991) compare the likelihood functions 12

for an intercept-only and full model. In particular, the McFadden pseudo-R2 is defined as follows: 13

R2
MF = 1 −

log L(full)
log L(null)

. 14

McKelvey and Zavoina (1975) propose a pseudo-R2 based on a latent model structure, where the binary outcome results 15

from discretizing a continuous latent variable relate to the predictors through a linear model. This pseudo-R2 is then the 16

proportion of the variance of the latent variable explained by the covariate. Cameron and Windmeijer (1997) define yet 17
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another pseudo-R2 index as the proportionate reduction in uncertainty, as measured by the Kullback–Leibler divergence,1

given the inclusion of the regressors. Windmeijer (1995) and Smith andMcKenna (2013) provide broad and detailed studies2

of the different pseudo-R2 indices available for binary choice models. Theoretical results regarding the convergence and3

asymptotic normality of pseudo-R2 indices are available in Hu et al. (2006).4

It is worth mentioning that there does not exist an equivalent statistic to the classical R2 coefficient in OLS regression5

when analyzing data with a logistic regression. It is well known that estimates arrived at through an iterative process and6

they are not computed tominimize variance, hence the OLS approach to goodness-of-fit does not apply. All previous indices7

are called pseudo-R2 because they look like the classical R2 in the sense that they are on a similar scale, ranging from 0 to 1,8

with higher values indicating better model fit.9

Alternatively to pseudo-R2 indices, there exist other exploratory methods for evaluating a logistic regression model. In10

accordance with the usual interpretation of R2 for linear models they try to capture the model’s ability to predict a single11

observation. Mainly, thosemethods take into account the differences between observed and predicted outcomes and a good12

model is defined when having a high explanatory power, i.e., a good prediction of an observation is only possible when the13

success probability is close to 1 or 0. Among others, we first highlight the coefficient of discrimination de Tjur (2009). It14

has a lot of intuitive appeal and the definition is very simple. For each of the two categories of the dependent variable is15

computed the average of the estimated probabilities and then the difference between them is computed. Its interpretation16

is based on the histograms of the empirical distributions of both the fitted values for the failures and the fitted values for17

the successes. Intuitively, the greater is the difference, the better is the model. Secondly, it is also worth to mention some18

indices based on the concept of concordance and discordance. Basically, concordance tells us the association between actual19

values and the values fitted by the model in percentage terms, namely, we compute the number of pairs where the one20

had a higher model score than the model score of zero and the opposite for discordance. Some examples are the classical21

well-known Kendall’s tau, Goodman–Kruskal Gamma and Somers’ D (Somers, 1962). Finally, another valuable contribution22

is given by the receiver operator characteristic (ROC) curve. The ROC curve represents ‘‘true positive’’ and ‘‘false positive’’23

classification rates as a function of different classification cutoff values for the predicted probabilities resulting from the24

logistic regression. In literature, several indices of accuracy have been proposed to summarize ROC curves. In particular, the25

area under the curve (AUC) index is one of the most commonly used, see, for instance, Hosmer and Lemeshow (2000), Metz26

(1978) and Fawcett (2006) for a detailed explanation of the basic principles of ROC analysis. The AUC index is related to the27

Somers’ D by the following relationship: DYX = 2AUC − 1 (see Newson, 2002).28

In this paper we propose a new exploratory index to measure the predictive power of a logistic regression model. From29

a theoretical point of view, it is not a proper pseudo-R2 index and analogously to other exploratory methods mentioned30

before it is based on the differences between observed and predicted outcomes. This new index is based on the sensitivity of31

the estimated binary logistic regression model. The term sensitivity within this context implies the quality of the model to32

predict correctly the value of the dependent variable. Most statistical software packages provide, as a self-evaluation of the33

estimatedmodel, the number of individuals in the sample that themodel predicts correctly as a function of the critical values34

considered (the cutoff points). In other words, each cutoff point cp provides the percentage of sampled individuals observed35

with values of one that the estimated model predicts correctly by assigning P[Y = 1] > cp. These values, which decrease36

as cp increases, are the components of a vector we refer to as S1, whose dimension is determined by the number of cutoff37

points cp1 , cp2 , . . . , cpn considered. Associated with the vector we have a vector X1 of the same dimension and of which38

the components are the number of sampled individuals observed with values of one that the model predicts accurately39

for each cutoff point cpi , but inaccurately for cpi+1 (i : 1, . . . , n − 1). Likewise, self-evaluation of the model provides the40

percentage of individuals of the sample observedwith values of zero that the estimatedmodel predicts correctly by assigning41

P[Y = 1] < cp. These values, which decrease as cp decreases, are the components of a vector we refer to as S0. In this case,42

we consider the components of S0 in decreasing order. Associated with S0, we have a vector X0 of which the components43

are the number of individuals of the sample observed with values of zero that the model predicts accurately for each cutoff44

point cpi , but inaccurately for cpi−1 .45

To illustrate, consider amodel estimated using a sample of 20 individuals observedwith the value one and 10 individuals46

observed with the value zero, and that we select deciles c0.1, c0.2, . . . , c0.9 as cutoff points. Let us assume that S1 and S0 are:47

S1 = (1, 1, 0.95, 0.9, 0.8, 0.8, 0.7, 0.55, 0.35); S0 = (1, 1, 1, 0.9, 0.9, 0.9, 0.7, 0.6, 0.3).48

The corresponding X1 and X0 vectors will then be:49

X1 = (0, 0, 1, 1, 2, 0, 2, 3, 4, 7); X0 = (0, 0, 0, 1, 0, 0, 2, 1, 3, 3).50

We may interpret the components of S1 and S0, within a ROC curve context, in terms of sensitivity and specificity,51

respectively. However, even though we have this common starting point derived from the ROC curve, we show later on52

that there are substantial methodological differences. We intend to introduce the idea of sensitivity as applied to any vectorQ353

X(xi) ∈ R+
n . In the same way that there is a certain intuitive idea that the components of a vector X are ‘‘more nearly equal’’54

than the components of another vector Y , we can talk about a certain intuitive idea that the components of a vector X present55

more sensitivity than the components of another vector Y .56

Focus again on vector X1 = (0, 0, 1, 1, 2, 0, 2, 3, 4, 7). We know that we can measure the inequality of the57

components of X1 via certain inequalitymeasures, such as variance,wherewe consider the underlying dispersion, or theGini58

index, where the vector components correspond to income distribution. Thesemeasurements and any others corresponding59
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