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1. Introduction

Car parking is a classical problem first studied by Rényi (1963), where cars of unit length arrive on a line segment
uniformly at random. The car parks at this location if and only if there is no overlap with existing cars. This process continues
until the configuration of parked cars is such that no new cars can be fitted, at which point we may compute the fraction
of the line segment that is utilized for parking, or jamming density. Rényi determined this parking constant as the length of
the line segment grows to infinity.

We are interested in the discrete parking problem, which was introduced by Flory (1939) and rediscovered by Page
(1959). Recall the setting of Page (1959): there are n sites which form n — 1 pairs of neighbouring sites. At the first step, a
pair (k, k+ 1) is chosen uniformly at random for the car to park. In the next step, another pair of sites is chosen uniformly at
random to form a parking spot for the next car. If this second pairis (k—1, k), (k, k+1), or (k+ 1, k+2) the second car leaves
as cars may not overlap; otherwise it parks and remains indefinitely. This procedure is repeated until there is no unoccupied
pair of neighbouring sites left. In Flory (1939) and Page (1959) the authors demonstrate that the jamming density grows as
E,/n — 1—e 2 asn — oo, with E, the expected number of occupied sites. Similar results have been obtained for larger cars
in Friedman et al. (1964), Klaassen and Runnenburg (2003) and Pinsky (2014). Asymptotic normality of the occupied space
was demonstrated in Runnenburg (1982) and Klaassen and Runnenburg (2003). The case with multiple rows of parking
space is considered by Georgiou et al. (2009) and Chern et al. (2015), and trees in Penrose and Sudbury (2005) and Dehling
et al. (2008).

This model has many applications, including polymer chemistry Flory (1939) and Mackenzie (1962), granulometry Gotoh
et al. (1978), elections Itoh and Ueda (1979), condensation and coagulation Cooper (1987), genome sequencing Roach et al.
(2000) and communication networks Coffman et al. (1998). We are motivated by the application of resource sharing in
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communication networks, in particular wireless random-access networks. Random-access protocols such as Carrier-Sense
Multiple-Access (CSMA) Kleinrock and Tobagi (1975) have gained much popularity for their ability to regulate the access of
network nodes to a shared medium in a fully distributed fashion, and are for example used in the IEEE 802.11 standard. A
node using the CSMA protocol attempts to transmit a packet after some random time, except if any nearby node is already
active.

The stochastic process describing the wireless network behaves as follows. We assume that time is slotted, and that
each transmission lasts 1 time slot. At the beginning of a time slot, all nodes are inactive, and the time slot is divided into a
contention period and a transmission period. During the contention period each node draws a random back-off time, after
which it activates as long as no nearby node is already active. This dictates the order in which nodes activate, with the
additional constraint that a node may not activate if one of its neighbours is already active.

It is readily seen that these dynamics are identical to that of the parking problem. The application to wireless networks
provides us with a useful alternative characterization of the process according to which parking spots are filled, where
instead of newly arriving cars selecting a spot uniformly at random, we assume each spot has one dedicated car, and the
order in which cars arrive determines the evolution of the parking process. This interpretation was previously used in Gerin
(2015) to provide an alternative approach to determining the parking constant.

Previous studies of the parking problem have focused on metrics such as the jamming density or the distribution of
the gap sizes. Instead, we are interested in the probability that each site is occupied, both in the case of a finite n and the
asymptotic regime. This is motivated by the application to wireless networks, where the probability of a site being occupied
is equivalent to the throughput of the wireless transmitter located on that site.

We start the next section by providing a rigorous definition of the activation process in a network governed by the CSMA
protocol and explain its equivalence to the classical parking problem. We then proceed to derive the probability that a given
node of a network of n nodes is active, which is the main result of the paper. This then allows us to recover two classic results
from Flory (1939) and Page (1959) as a corollary. First we retrieve the probability of sites 1 and 2 being occupied, and the
second corollary is to derive the expected number of active nodes in a network of length n. This is equal to the expected
number of cars that can park on a line segment of length n — 1.

2. Model and result

Consider a linear network of n sites numbered 1, ..., n. We draw a random permutation of sites o (1), ..., o(n), and
sites attempt to activate in this order. Such an attempt is successful if neither of the site’s neighbours is already active. The
set of sites active at the end of this process is fully determined by the permutation, and the end configuration is such that
the gap between two active sites in at most 2, i.e., no additional sites can be activated. The relation to the classical parking
problem is immediate: the site with the highest priority order may be considered to be the left one of the pair of sites (out
of sites 1, 2, ..., n + 1) chosen first. Subsequent steps are also equivalent.

It is worth mentioning that in both the classical parking problem and the setting of our note, one can consider cars (or
interference regions) of length bigger than 1 and our technique may be applied in this general setting. However, we limit
ourselves to the case of length 1 for ease of presentation.

We are interested in the probability of a site being active. This quantity corresponds to the per-node throughputs in a
wireless network. We denote by T;(n) the probability that node i is active. To obtain a connection between this quantity, and
the probability S;(n) that site i is occupied in the classical parking setting, observe that the two ways site i can be occupied
is by placing a car on sites (i — 1, i) or on (i, i + 1). This is equivalent to activating either node i — 1 or i. Thus,

Si(m) =Tin— 1) +Ti-1(n— 1)
with the convention that T_; (k) = 0 for all k.
The following Theorem was first presented in Shneer and van de Ven (2011), and is our main result.
Theorem 1. Forn > 1and1 <i <n,
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