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1. Introduction

Stochastic modeling has become more and more popular in risk management since the groundbreaking work of
Samuelson (1965) and Black and Scholes (1973). In the practice of quantitative risk management, modeling the aggregate
risk model S = X;+X;+- - -+X, is a fundamental problem, where S is the aggregate risk and X1, X5, . . ., X, are the marginal
risks. There are generally two directions to deal with this problem, one is “bottom-up” (see Duffie and Garleanu, 2001 for
the intuitive insight on “bottom-up”) and the other is “top-down” (see Giesecke et al., 2011 for “top-down” method).

From the angle of the “bottom-up”, the problem consists of two much more fundamental aspects, one is the model for the
marginal risks and other is the model for the dependence structure among them. For the model for marginal risks, practical
users usually adopt the parameter models such as Gaussian, Beta and Gamma distributions, see Shao (2003) for references.
For the dependence structure, practical users always describe the dependence structure by a copula function, which is a
n-dimensional distribution with [0, 1] uniform marginal distributions, see Nelsen (2006) and McNeil et al. (2015) for more
introductions. The most commonly used copula functions include the Gaussian copula (Li, 2000 applied it to the pricing of
CDO), student-t copula and Archimedean copula. Please note that once marginal risks are given, the dependence structure
among them is then of critical importance for the aggregate risk S. Wang and Wang (2011) and Wang et al. (2013) discussed
the worst scenarios of the Value-at-Risk of the aggregate risk under dependence uncertainty but with known marginal
distributions. Based on the information of the marginals and the dependence, the aggregate risk S becomes calculable,
either by simulation or explicit formulation. However, there are often no closed-form expressions for distributions of the
aggregate risks since it is always involved in a multiple integral,! sometimes the simulation can even be relatively difficult.
Given these considerations, proposing a brief approach to substitute the “bottom-up” method is of crucial necessity from
both viewpoints of industry practice and academic research.
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(Fx, (t — x), Fx, (x)) dFx, (x) if the copula C(u, v) of X; and X; is absolutely continuous.
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In this paper, a “top-down” method that enables us to decompose the aggregate risk into marginal risks under partial
information restrictions is proposed. Different from the “bottom-up” method, the “top-down” method will first model the
aggregate risk and then thin it into a sum of marginal risks under partial information restrictions, namely, it first assumes
the aggregate risk S and then assumes expectations and the covariance matrix of the marginal risks, see He et al. (2010), Kaas
and Goovaerts (1986) and Popescu (2005) for more literature on partial information assumptions. With these assumptions,
the “top-down” method enables us to find n (any positive integer) random variables X1, X5, . .., X, with the given expec-
tations and covariance matrix such that S = X; + X; + - - - + X;;, what is more important, the marginal risks {X;}; all have
closed-form solutions by the “top-down” method and it is exactly the closed-form solution that makes the simulation of the
aggregate risk model much easier compared with the “bottom-up” method, especially when the number n of the marginal
risks is very large.

The “bottom-up” method provides us an accurate description of the aggregate risk model, however, the “top-down”
method is actually an approximation method of the much more elaborate “bottom-up” method, by substituting the distri-
butions of marginal risks and the dependence structure with the mean and the covariance respectively.

The rest of this paper is structured as follows: Section 2 provides the main decomposition method, Section 3 gives an
executable algorithm and applies it to a concrete example, Section 4 concludes the whole paper.

2. Decomposition method

All the random variables in this paper are defined in the same non-atomic probability space (§2, ¥, P). Now let us
consider the standard aggregate risk model:

S=Xi+Xo+ -+ X

In this section, the viewpoint of the “top-down” is adopted: first assume that the aggregate risk S is known and then
decompose S into a sum of marginal risks by restrictions of expectations and covariance of marginal risks.

Lemma 2.1. Let S be a square-integrable random variable defined on a non-atomic probability space (§2, ¥, P), then for any
n € N, there exist random variables {8i}?:_11 defined on the same probability space such that S, §1, 8-, ..., Sp—1 are pairwise
non-correlated.

Proof. Without losing generality, we assume that E[S] = 0.Let & = {X : E[X] = 0, E[X?] < 4oo} and define an
equivalence relation in D: X ~ Y < X = Y a.s. It is easy to see that Dy = D/ ~ is a vector space on domain R.
Then define an inner product operation on Dy x Dy: (X,Y) = COV(X,Y) = E[XY], obviously, Dg is an inner product
space under the operator (X, Y). Therefore, by Gram-Schmidt Orthogonalization, it is easy to expand {S} to an orthogonal
family {S, 81, 82, ...,8,_1} € Dy since the dimension of Ny on R is infinite. Hence, {S, 1, 82, ..., 8,—1} is a pairwise
non-correlated family. O

Theorem 2.1. Given any square-integrable random variable S on a non-atomic space and n € N, for any n expectations {14},
with Y, ui = E[S] and any n x n semi-positive definite symmetrical matrix ¥ = (oy); with Zi,] oij = Varl[S], there exists a

random vector X = (X1, X3, ..., Xy) such that:
S=Xi+X+ -+ X,
inwhich E[X;] = wifori=1,2,...,nand E[(X — E[X])T (X — E[X])] = .

Proof. Without losing generality, we assume that E[S] = 0, Var[S] = 1and u; = O0fori = 1,2, ..., n. Lemma 2.1 allows

us to find n — 1 random variables 81, &>, ..., 6,—1 such that S, 84, &>, ..., 6,—1 are non-correlated, with normalization we
can assume that E[§;] = 0and Var[é;] =1fori=1,2,...,n— 1.
Now we will use S, 81, 82, ..., 8,1 to construct X; fori = 1,2,...,n, in other words, we will express X; as a linear

combination of this non-correlated family. Then the proof turns to find a n x n matrix A = (a;); with the following three
Restrictions 1-3 such that:

AS, 81,82, . 8n) T = X1, Xa o Xn) T (1)
Restriction 1. E[X] =0 <= aqE[S]+ |5 a;E[8; 1] =0fori=1,2,....n.
Restriction 2. E[(X —EX)T(X —E[X)] =X < AA = X.

Restriction3. S=X;+ X, +---+ X, <— (1,1,...,1DA=(1,0,0,...,0).
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