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a b s t r a c t

In this paper a regular variational boundary element formulation for dynamic analysis of two-

dimensional magneto-electro-elastic domains is presented. The method is based on a hybrid variational

principle expressed in terms of generalized magneto-electro-elastic variables. The domain variables are

approximated by using a superposition of weighted regular fundamental solutions of the static magneto-

electro-elastic problem, whereas the boundary variables are expressed in terms of nodal values. The

variational principle coupled with the proposed discretization scheme leads to the calculation of

frequency-independent and symmetric generalized stiffness and mass matrices. The generalized stiffness

matrix is computed in terms of boundary integrals of regular kernels only. On the other hand, to achieve

meaningful computational advantages, the domain integral defining the generalized mass matrix is

reduced to the boundary through the use of the dual reciprocity method, although this implies the loss of

symmetry. A purely boundary model is then obtained for the computation of the structural operators. The

model can be directly used into standard assembly procedures for the analysis of non-homogeneous and

layered structures. Additionally, the proposed approach presents some features that place it in the

framework of the weak form meshless methods. Indeed, only a set of scattered points is actually needed

for the variable interpolation, while a global background boundary mesh is only used for the integration of

the influence coefficients. The results obtained show good agreement with those available in the literature

proving the effectiveness of the proposed approach.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The use of magneto-electro-elastic materials has recently
emerged in the field of smart structural devices such as sensors,
actuators and transducers. These media convert energy into three
different forms: magnetic, electric and mechanic. This peculiar
feature arises as magneto-electro-elastic media are particulate or
laminate composite materials having among their constituents
piezoelectric and piezomagnetic phases. Magneto-electric cou-
pling is the by-product property of magneto–mechanic and
electro–mechanic coupling and this characteristic seems to make
these multi-field composites potentially superior to other materi-
als for application in smart structures [1]. The properties of these
materials allow employing electrically or magnetically induced
strains to control the mechanical behaviour of a structure and, on
the other hand, the use of strain-induced electric and magnetic
signals as a feedback driver in control systems. At its more evolved
application this approach leads to the concept of highly integrated
intelligent structures which are capable of reacting to external

stimula by means of a distributed network of sensors and actuators
[2–4]. This goal can be achieved by layers of magneto-electro-
elastic material being either attached to or embedded in the host
structure to be controlled and actuated by a system of suitably
arranged electrodes and poles. Among other technological applica-
tions, great interest is devoted to structural vibrations control
through the use of active or passive damping systems based on
magneto-electro-elastic materials as just proposed with piezo-
electrics [5–8] and piezomagnetics [9–11].

The effective design of magneto-electro-elastic devices relies on
the capability of correctly modelling the system’s response taking
into account the mutual effects between mechanical, electric and
magnetic fields. Analytical solutions to problems concerning
magneto-electro-elastic solids are rare due to the complexity of
the governing equations. Recently, some formulations have been
developed for the dynamic analysis of single-layer and laminated
electro-elastic [12–18] and magneto-electro-elastic solids [19–25].
These models are generally based on energy principles and are
classified on the basis of the assumptions made to approximate the
electromechanical variables in the thickness direction of the
laminate. They are analytically solved for simple cases, whereas
the extensive use of the finite element method allows the treat-
ment of more general problems.
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Besides the finite element techniques, the boundary element
method (BEM) has been gaining attention over the last few decades
as a powerful and reliable tool for the accurate calculation of the
solution to several problems in many different areas [26]. It has
been recently extended to the study of piezoelectric [27–29] and
magneto-electro-elastic [30–33] problems. When dealing with
anisotropic, piezoelectric or magneto-electro-elastic dynamics by
the boundary element method, the main drawback is the lack of the
corresponding fundamental solutions, which generally leads to
rather expensive numerical integration schemes. This issue is
addressed by several authors through the use of the fundamental
solutions of the associated static problem and by considering the
inertia terms as body forces. The domain integrals obtained from
this procedure are generally transformed to boundary integrals
through the use of appropriate techniques such as the dual
reciprocity method [34,35]. Indeed, this approach has successfully
been applied to the free vibrations analysis of anisotropic [36–38]
and piezoelectric [39,40] structures. Nonetheless, in the standard
BEM dynamic models the properties of symmetry and definiteness
of the continuum are lost and the discrete structural operators are
neither symmetric nor definite. The loss of these fundamental
properties of the continuum makes BEM models less efficient for
dynamics. To overcome this issue, variational BEM formulations
have been developed for both elastostatics and elastodynamics
[41–46]. In this context, the displacement boundary method (DBM)
proposed by Dav�ı and Milazzo for the solution of 2D free and forced
vibrations of isotropic domains [47,48] and for the lateral vibration
analysis of isotropic and anisotropic plates [49,50], represents a
variational formulation devised to preserve the fundamental
properties of the structural matrices. Moreover, as pointed out in
Ref. [50], this approach presents some features which allow
classifying it as a weak form meshless method [51]. Indeed, only
a set of scattered points is actually needed for the variable
interpolation, while a background boundary mesh is only used
for the integration of the influence coefficients. The present paper
extends this variational formulation to the magneto-electro-elastic
problem. In addition an improved discretization scheme to obtain
the corresponding numerical model is presented. The model is
also applied to the analysis of multidomain configurations for the
study of multilayer structures. To assess the accuracy and the
effectiveness of the proposed approach, some applications are
presented and the results are compared with those available in the
literature.

2. Governing equations

Let O denote a two-dimensional magneto-electro-elastic body
lying in the x1x2 plane and bounded by the contour line qO. It is
assumed that the magneto-electro-mechanical response does not
vary along the x3 direction. Moreover, despite the non-linear
behaviour of the magnetostrictive phase, it is assumed that the
material behaves linearly: in fact, most of the common magnetos-
trictive materials exhibit moderate linearity when undergoing
small excitations. The dynamic elastic state of the body is described
using the displacement field uT ¼ ½u1 u2 �, the strain vector
cT ¼ ½ g11 g22 g12 � and the stress vector rT ¼ ½s11 s22 s12 �.
In magneto-electro-elastic materials the elastic waves propagate at
a speed several orders of magnitude lower than the speed of the
electromagnetic waves. This implies that the electromagnetic field
can be treated as quasi-static and dynamical changes in the elastic
field result in instantaneous change in the electric and magnetic
fields. Therefore, the electric state is described in terms of the
electric potential functionj, the electric field vector ET

¼ E1 E2
� �

and the electric displacements vectorDT ¼ D1 D2
� �

. To model the
magnetic state, it is assumed that no external current density is

present in the domain and the scalar magnetic potential c is
therefore chosen as the magnetic field principal variable. The
associated magnetic field HT

¼ H1 H2
� �

and magnetic induction
BT
¼ B1 B2
� �

are also introduced.
Extending the Barnett and Lothe’s formalism [52] for piezo-

electrics to magneto-electro-elasticity, a compact matrix notation
for the problem governing equations can be achieved. Let us define
a set of generalized quantities, namely generalized displacements

U¼ ½u1 u2 j c �T , generalized stresses RT
¼ ½rT DT BT �,

generalized strains CT
¼ ½cT�ET

�HT
� and generalized body forces

F¼ ½ f1 f2 �o 0 �T , where fi are the components of the mechan-

ical body forces and o is the electric charge density. The general-
ized compatibility relationships (i.e. the strain–displacement,
electric gradient and magnetic gradient relationships), the general-
ized equilibrium equations (i.e. the equilibrium equations and
Gauss’ laws for electrostatic and magnetostatics) and the magneto-
electro-elastic constitutive law are written as

C¼DU in O ð1Þ

DTRþF¼ 0 in O ð2Þ

R¼RC in O ð3Þ

where R is the generalized stiffness matrix and D the generalized
compatibility operator defined as follows:

R¼

C eT dT

e �e �gT

d �g �l

2
664

3
775 ð4Þ

D¼

@=@x1 0 @=@x2 0 0 0 0

0 @=@x2 @=@x1 0 0 0 0

0 0 0 @=@x1 @=@x2 0 0

0 0 0 0 0 @=@x1 @=@x2

2
66664

3
77775

T

ð5Þ

In Eq. (4), C is the elasticity matrix, e and l the matrices of dielectric
constants and magnetic permeability, respectively, e and d the
matrices of piezoelectric and piezomagnetic constants and
g the matrix describing the direct magneto-electric coupling.
Eqs. (1)–(3) formally resemble the governing equations of aniso-
tropic elasticity. They can be rearranged to obtain the governing
equations of the magneto-electro-elasticity, analogous to Navier’s
equations for elasticity

DT RDUþF¼ 0 in O ð6Þ

For the dynamic problem, the generalized body forces term is
given by the sum of the inertial forces and the generalized applied
loads q. It can be written

F¼

f1

f2

�o
0

2
6664

3
7775¼

q1

q2

�o
0

2
6664

3
7775�r

€u1

€u2

0

0

2
6664

3
7775¼ q�q €U ð7Þ

where the overdot indicates the time derivative and the matrix q
denotes the product of the material density by the 4�4 identity
matrix in which the last two diagonal terms are replaced by zeros. It
is worth noting that, with this definition, the generalized inertia
term takes into account the quasi-static modelling of electric and
magnetic fields.

In the generalized variable notation essential and natural
boundary conditions, associated with Eq. (6), are expressed as

U¼U on qO1 ð8Þ

T¼DT
nRDU¼ T on qO2 ð9Þ
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