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Nonparametric estimation of trend in directional data
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Abstract

Consider measured positions of the paleomagnetic north pole over time. Each measured position may
be viewed as a direction, expressed as a unit vector in three dimensions and incorporating some error. In
this sequence, the true directions are expected to be close to one another at nearby times. A simple trend
estimator that respects the geometry of the sphere is to compute a running average over the time-ordered
observed direction vectors, then normalize these average vectors to unit length. This paper treats a
considerably richer class of competing directional trend estimators that respect spherical geometry. The
analysis relies on a nonparametric error model for directional data in Rq that imposes no symmetry or other
shape restrictions on the error distributions. Good trend estimators are selected by comparing estimated
risks of competing estimators under the error model. Uniform laws of large numbers, from empirical process
theory, establish when these estimated risks are trustworthy surrogates for the corresponding unknown risks.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Preliminaries

Consider measurements on the position of the Earth’s north magnetic pole, derived from
rock samples collected at various sites. Each observed position, usually reported as latitude and
longitude, may be represented as a unit vector in R3 that specifies the direction from the center
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of the Earth to the point on the Earth’s surface with that latitude and longitude. Associated with
each such direction vector is the geological dating of the corresponding rock sample. Substantial
measurement errors are to be expected in the data. The problem is to extract trend in the position
of the north magnetic pole as a function of time.

Consider in R3 the orthonormal basis ( j1, j2, j3) in which j3 is the unit vector pointing to the
Earth’s geographical north pole and j1 is the unit vector orthogonal to j3 that points to longitude
0. Relative to this basis, an observed direction has polar coordinates (θ, φ). Here θ ∈ [0, π] is
the angle, in radians, between j3 and the observed direction. The angle φ ∈ [0, 2π) specifies, in
radians, the counterclockwise rotation angle in the j1– j2 plane from j1 to the longitude of the
observed direction.

Relative to the same basis, the unit vector with polar coordinates (θ, φ) has Cartesian
coordinates

x1 = sin(θ) cos(φ), x2 = sin(θ) sin(φ), x3 = cos(θ). (1.1)

Cartesian coordinates prove useful in defining trend estimators that operate on directional data.
From the Cartesian coordinates of a direction, whether observed or fitted, the polar coordinates
may be recovered as

(θ, φ) =


(arccos(x3), atan2(x2, x1)) if atan2(x2, x1) ≥ 0
(arccos(x3), atan2(x2, x1)+ 2π) otherwise.

(1.2)

The function atan2, which has domain R2
− {0, 0} and range (−π, π] is defined by

atan2(v, u) =


arctan(v/u) if u > 0
arctan(v/u)+ π if u < 0, v ≥ 0
arctan(v/u)− π if u < 0, v < 0
π/2 if u = 0, v > 0
−π/2 if u = 0, v < 0.

(1.3)

Mathematical programming languages generally provide this function.
Important for visualizing directions in R3 is the Lambert azimuthal projection of a

hemisphere. If a direction has polar coordinates (θ, φ), let

(ρ, ψ) =


(2 sin(θ/2), φ) if θ ≤ π/2
(2 sin(π − θ)/2, φ) if θ > π/2.

(1.4)

Then plot the direction as the projected point (ρ cos(ψ), ρ sin(ψ)) in R2, using different plotting
symbols according to whether θ ≤ π/2 (the northern hemisphere) or θ > π/2 (the southern
hemisphere). The first case, where θ ≤ π/2, gives an area preserving projection of the northern
hemisphere into a disk of radius

√
2. The center of the disk represents the north pole and the

perimeter of the disk corresponds to the equator. The second case does likewise for the southern
hemisphere, the center of the disk now representing the south pole. See [15] for a brief derivation
of the Lambert (or equal area) projection and a discussion of its use in directional statistics.

Jupp and Kent [9, pp. 42–45] reported 25 positions of the paleomagnetic north pole, measured
in rock specimens from various sites in Antarctica. Each rock specimen was dated, so that the
time sequence of the measured positions is known. The left-hand Lambert plot in Fig. 1 displays
the measured magnetic pole positions, expressed in polar coordinates and plotted according to
(1.4). Line segments join positions adjacent in time. Little pattern emerges. Insight is gained
by: (a) using (1.1) to express each observed direction as a unit vector in Cartesian coordinates;
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