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Abstract

Two-component mixture priors provide a traditional way to induce sparsity in high-dimensional Bayes
models. However, several aspects of such a prior, including computational complexities in high-dimensions,
interpretation of exact zeros and non-sparse posterior summaries under standard loss functions, have
motivated an amazing variety of continuous shrinkage priors, which can be expressed as global–local scale
mixtures of Gaussians. Interestingly, we demonstrate that many commonly used shrinkage priors, including
the Bayesian Lasso, do not have adequate posterior concentration in high-dimensional settings.
c⃝ 2016 Published by Elsevier B.V.
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1. Introduction

With the recent flurry of activities in high-throughput data, taking advantage of sparsity to
perform statistical inference is a common theme in situations where the number of model pa-
rameters (p) increases with the sample-size (n). In such scenarios, penalization methods [3] can
yield a point estimate very quickly. There is a rich theoretical literature justifying the optimality
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properties of such penalization approaches [31,26,30,16,23,17], with fast algorithms [10] and
compelling applied results leading to their routine use.

On the other hand, statistical theory for characterizing the uncertainty of model parameters
using penalization methods in high dimensions has received comparatively less attention [18].
Bayesian approaches provide a natural measure of uncertainty through the induced posterior
distribution. Most penalization methods have a Bayesian counterpart. For instance, ℓ1 and ℓ2
regularization methods are equivalent to placing zero-mean double-exponential and Gaussian
priors respectively on the parameter vector and the solutions of the corresponding optimization
problems are precisely the mode of the Bayesian posterior distribution. Moreover, a Bayesian
approach has distinct advantages in terms of choice of tuning parameters, allowing key penalty
parameters to be marginalized over the posterior distribution instead of relying on cross-
validation. Thus a fruitful line of research is to investigate the behavior of the entire posterior
distribution of the Bayesian models corresponding to penalization methods.

The process of eliciting prior distributions can be very tricky in high-dimensions. Two-
component mixture priors with a point mass at zero are traditionally used in high-dimensional
settings because of their ability to produce exact zeros and ease of eliciting hyperparameters
based on the prior knowledge about the level of sparsity and the size of the signal coefficients.
In [7,6], the authors showed optimality properties for carefully chosen point mass mixture priors
in high-dimensional settings. Recently, in an insightful article [22], several arguments were raised
against the point mass priors concerning interpretation of exact zeros and computational issues
arising from exploring a very high-dimensional model space. This prompted the authors of [22]
to seek for continuous analogues of point mass priors based on Gaussian scale mixtures which
obviates the need to search over the huge model space. These scale mixtures of Gaussian priors
are designed to have a sharp peak near zero with heavy tails so as to emulate the point mass
mixture priors. In the last few years, a huge variety of shrinkage priors have been proposed in
the Bayesian literature [19,25,13,4,1]. In [1] the authors studied shrinkage priors and provided
simple sufficient conditions for posterior consistency in p ≤ n settings. However, results on
quantifying posterior concentration using continuous shrinkage priors are scarce.

Even from a purely practical point of view, considerable difficulties have arisen when attempts
have been made to reflect prior beliefs on sparsity through the associated hyperparameters of
these distributions. For example, suppose we wish to estimate θ0 ∈ Rn from y ∼ Nn(θ0, In)

under the prior knowledge that only a fraction of the coordinates of θ0 are non-zero. What are the
appropriate parameters one should choose in the Bayes Lasso formulation [19] to ensure efficient
estimation of θ0? A first step towards answering such questions is to understand the concentration
of shrinkage priors around sparse vectors. This is critically important in two aspects. First,
optimal prior concentration is almost necessary for optimal posterior contraction rates under
a variety of loss functions. Second, studying the concentration of shrinkage priors around sparse
vectors will yield insights into the geometry of shrinkage priors which can then be harnessed for
prior elicitation for a broad class of models.

Our contribution in this paper is two fold. First, we obtain sharp bounds for the concentration
of continuous shrinkage priors around sparse high dimensional vectors. This is quite challenging
because the joint distributions of such priors obtained through integrating several latent hyperpa-
rameters are often unwieldy to work with. One of the reasons why the point mass priors enjoy
theoretical optimality properties is because they have optimal concentration around sparse vec-
tors [7,6]. We show that the concentration of some of the commonly used continuous shrinkage
priors can sometimes be smaller than that of the point mass priors by several orders of magnitude.
Second, using these results, we show that for the normal means problem, the Bayesian Lasso [19]
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