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Abstract

We consider the problem of estimating a low rank covariance function K (t, u) of a Gaussian process
S(t), t ∈ [0, 1] based on n i.i.d. copies of S observed in a white noise. We suggest a new estimation
procedure adapting simultaneously to the low rank structure and the smoothness of the covariance function.
The new procedure is based on nuclear norm penalization and exhibits superior performances as compared
to the sample covariance function by a polynomial factor in the sample size n. Other results include a
minimax lower bound for estimation of low-rank covariance functions showing that our procedure is optimal
as well as a scheme to estimate the unknown noise variance of the Gaussian process.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Let X (t), t ∈ [0, 1] be a Gaussian process satisfying the following stochastic differential
equation:

d X (t) = S(t)dt + σdW (t), t ∈ [0, 1], (1)
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where W is the standard Brownian motion, σ > 0 is the noise level, and

S(t) =

r
k=1


λkξkϕk(t), t ∈ [0, 1].

Here ξk are i.i.d. standard Gaussian random variables independent of the Brownian motion
W , {ϕk}

r
k=1 are unknown orthonormal functions in L2[0, 1], possibly, with r = ∞, and the

coefficients λk > 0 are unknown and such that
r

k=1 λk < ∞. The value of r is also
unknown.

Assume that we observe n i.i.d. copies X1(t), . . . , Xn(t) of the process X (t). In this
paper, we study the problem of estimation of the covariance function of the stochastic
process S(·),

K (t, u) = E(S(t)S(u)) =

r
k=1

λkϕk(t)ϕk(u), t, u ∈ [0, 1], (2)

based on the observations {X1(t), . . . , Xn(t), t ∈ [0, 1]}. If r = ∞, the sum in (2) is understood
in the sense of L2([0, 1] × [0, 1])-convergence. In short, (1) is a model of a “signal” (Gaussian
stochastic process S) observed in a Gaussian white noise and the goal is to estimate the
covariance of the signal based on a sample of such observations.

Statistical estimation of covariance functions has already received some attention in the
literature. However, somewhat different setting was considered where the trajectories X i (·) are
observed at discrete time locations:

Yi, j = Si (Ti, j ) + σηi, j , 1 ≤ i ≤ n, 1 ≤ j ≤ m,

where Si are i.i.d. copies of S, ηi, j are i.i.d. N (0, 1) and, for each i , the points Ti, j , 1 ≤ j ≤ m,
are equispaced in the interval [0, 1] or independent random variables with uniform distribution on
[0, 1]. In this setting, Yao et al. [14] proposed a local smoothing estimation procedure assuming
that the trajectories X i (·) are well approximated by the projection on the linear span of functions
ϕ1, . . . , ϕk for some known fixed k chosen by cross-validation. This procedure is computation-
ally intensive as it requires to compute the eigenvalues and the inverse for n distinct m × m
empirical covariance matrices of the trajectories X i , 1 ≤ i ≤ n, at each of the cross-validation
steps. The results in [14] provide theoretical guarantees for estimation of the covariance function
and its eigenfunctions under the condition that the previous approximation is sufficiently precise.
Hall et al. [3] consider the same methodology and study the effect of the sampling rate on the
estimation rate of the eigenfunctions. In a similar framework, Bunea and Xiao [2] propose a sim-
pler procedure to estimate the eigenfunctions and obtain theoretical guarantees on the estimation
error. Their approach involves a dimension reduction step where the selection of the relevant
eigenfunctions is performed by thresholding the eigenvalues of a correctly constructed empirical
covariance matrix. In a similar setting, Bigot et al. [1] consider the estimation of the covariance
matrix of the process S at sample points rather than that of the covariance function. This problem
can be reduced to multivariate regression and Bigot et al. [1] develop a model selection approach
to it resulting in some oracle inequalities.

Noteworthy, strong regularity conditions are usually imposed on the eigenfunctions ϕk in
the existing literature. In [3] the eigenfunctions are assumed to admit bounded derivatives of
order at least two. In addition, the optimal bandwidth choice in the local smoothing approach
used in [3,14] requires the knowledge of smoothness degree of the eigenfunctions. In [2],
the eigenfunctions are assumed to be continuously differentiable with bounded derivatives, the
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