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In this paper, an application of regularized meshless method (RMM) for solving the problem of obliquely
incident water wave passing a submerged breakwater is presented. By using desingularization technique
to regularize the singularity and hypersingularity of the kernel functions, source points can be located on
the physical boundary of an arbitrary domain. To verify the practicability and validity of the RMM,
simulations for observing the propagation of oblique incident wave through a barrier are presented where
the modified Helmholtz equation is satisfied. Finally, three examples are given to show the effects of
breakwater with rigid and absorbing boundary conditions to energy dissipation caused by existence of a
barrier. After comparing such analytical solution with the corresponding boundary element method
(BEM) solutions, they are shown to be in good agreement.
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1. Introduction

In the past decade, meshless method, so-called mesh free
method, has been a well-known numerical method, and it has
been a popular method for scientific computing due to a strong
demand of taking a fewer time on mesh generation in domains of
high dimensions. The model setup in the process of using meshless
methods takes less time than that in using boundary element
method. It is expected that meshless methods will be a significant
and promising alternative that dominates future numerical com-
putations. Several important types of meshless methods are
reported in literatures [3-5,10-15,17,18,21,22,24,27,29,37].

Among the aforesaid meshless methods, method of fundamen-
tal solutions (MFS) has been extensively applied to solving
engineering problems [4,17,29], in which this method is related
to an indirect method of single-layer potential. MFS is one kind of
meshless method in which only boundary nodes are needed.
Comprehensive reviews of the MFS were published by Fairweather
and Karageorghis [17] and Chen and Golberg [4]. In order to avoid
the problem of singularity, the sources points of a set of single layer
potential (corresponding to the fundamental solution) are located
on nonphysical boundary (namely fictitious boundary). A
singularity-free method with regular formulation is then obtained.
It is effective and relatively easy to use. However, the MFS has not
become a popular numerical method because of some controversy
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from making an artificial selection of off-set distance between
artificial boundary and physical boundary. In general, it is difficult
to choose an optimal fictitious boundary in a complicated geome-
try. This brings some limitation to the implementation of MFS,
since the appropriate location of source points requires accurate
estimation. The diagonal coefficients of the influence matrices are
divergent in common cases when the corresponding fictitious
boundary approaches the real boundary. Despite of the disappear-
ance of singularities, the influence matrices become ill-posed when
the fictitious boundary is far away from the real boundary. The
results become very unstable, since the condition number gets
very large.

Aim of this paper is to propose the developed meshless method
[35], the regularized meshless method (RMM), for solving modified
Helmholtz equation, where the source points are located on the
physical boundary. We present an alternative to the traditional
numerical approach by retaining the salient meshless features of
MFS and taking normal derivative of the fundamental solution of
modified Helmholtz equation as radial basis functions (RBF)
[4,5,12,34,35]. The solution is expressed in terms of a double-
layer potential instead of a single-layer potential on the physical
boundary without having an integration process. Through the
application of desingularization technique upon the diagonal terms
when the source point and boundary points are coincident, the
proposed meshless method can avoid the occurrence of ambiguity
of off-set distance in the conventional MFS.

By using the regularization technique of subtracting and adding-
back, the singularity and hypersingularity of the kernel functions
can be regularized. The main idea is to add an augmented series
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containing one singular term and then subtract the same from the
representing series of solution. The two singular terms are equal to
each other. At the same time, the zero sum of the augmented series
can be derived in the proposed formulation [7,12,34,35] and may
benefit the regularization process during the formulation. In general,
the diagonal terms of the influence matrices can then be derived for
arbitrary domain. Furthermore, the innovative concept of this study is
that this regularization technique has been of little use within
meshless methods except in recent publications on Laplace and
Helmholtz equation [7-9,12,34,35]. In this study, we extend the
Helmholtz equation considered in the above publications to modified
Helmholtz equation. For the final purpose of demonstrating practic-
ability and validity of the method, we present several test problems
for 2-D scattering water waves through submerged breakwater,
governed by a modified Helmholtz equation.

The primary function of submerged breakwaters is to reduce
wave energy transmitted through it and to have the advantages of
allowing water circulation, fish passage, and provision of econom-
ical protection. A suitable thin barrier may act as a good model for
breakwater. Prediction of wave interactions has been studied
previously for many kinds of configuration of water barrier in
linear wave diffraction theory [2,6,16,19,20,23,25,26,28,29-33,36].
Many analytical and numerical solutions have been developed to
solve the water wave problem, such as the eigenfunction expansion
method [18,25,26] and the boundary element method [6,23,28].
The reflection and transmission of obliquely incident water wave
past a submerged barrier with a finite width were studied using
boundary element method (BEM) in linear wave theory [5,22]. In
this paper, we implement the RMM to solve the problems of
obliquely incident water wave to demonstrate the practicability of
our proposed method. The boundary condition of breakwater can
be the absorbing boundary condition with different absorbing
parameters on both front and back sides of the breakwater. The
results will be compared with those obtained by simulation and by
using eigenfunction expansion method.

2. Formulation
2.1. Governing equation

The real physical problems for the modified Helmholtz equation
constrain the 2-D water wave scattering problem through the
submerged breakwater problem as follows:

Consider a vertical thin barrier paralleled to the z-axis as shown
in Fig.1. A wave train with a frequency ¢ propagates towards the
barrier with an angle 0 in a constant water depth h. Assuming there
is an inviscid, incompressible fluid and irrotational flow, the wave

field may be represented by the velocity potential @(x,y,z,t) which

satisfies the Laplace equation as

V2d(x,y,z,t) =0 1)
According to the uniformity of the water depth in the z-axis and

the periodicity in time, the potential A”)(s' x") of fluid motion can be

expressed as

¢(vavzv t) = ¢(va) e(;l—at)i (2)

where /=k sin(f) and k is the wave number which satisfies the

dispersion relation:

o2 = gktanh(kh) 3)

where g is the acceleration of gravity. The unknown function,
¢(x,y), describes the fluctuation of the potential on the x-y plane.
Substitution of Eq. (2) into Eq. (1) yields the modified Helmholtz
equation as follows:

V2opxy) -2 p(xy)=0, (xy)eD )
where D is the domain of interest.

2.2. Boundary conditions

The boundary conditions (BCs) of the interested domain are
summarized as

1. The linearized free water surface boundary condition:
WPy _F2pXy) _ g
oy g
2. Seabed and breakwater boundary conditions:
(a) Rigid boundary condition:
Py _
on
where n is boundary normal vector.
(b) Absorbing boundary condition:
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where ¢1(x,y) and ¢,(x,y) are the potential of both front and

back sides of the breakwater and G; and G, are the

corresponding absorbing parameters, respectively.

3. Radiation condition at infinity:
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Fig. 1. Definition sketch of the water scattering problem of oblique incident wave past a breakwater.
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