

Available online at www.sciencedirect.com

stochastic processes and their applications

Stochastic Processes and their Applications 127 (2017) 2482-2507

www.elsevier.com/locate/spa

Approximating a diffusion by a finite-state hidden Markov model

I. Kontoyiannis^{a,*}, S.P. Meyn^b

^a Department of Informatics, Athens University of Economics and Business, Patission 76, Athens 10434, Greece ^b Department of Electrical and Computer Engineering, University of Florida, Gainesville, USA

Received 3 July 2015; received in revised form 25 April 2016; accepted 27 November 2016 Available online 10 December 2016

Abstract

For a wide class of continuous-time Markov processes evolving on an open, connected subset of \mathbb{R}^d , the following are shown to be equivalent:

- (i) The process satisfies (a slightly weaker version of) the classical Donsker–Varadhan conditions;
- (ii) The transition semigroup of the process can be approximated by a finite-state hidden Markov model, in a strong sense in terms of an associated operator norm;
- (iii) The resolvent kernel of the process is 'v-separable', that is, it can be approximated arbitrarily well in operator norm by finite-rank kernels.

Under any (hence all) of the above conditions, the Markov process is shown to have a purely discrete spectrum on a naturally associated weighted L_{∞} space.

© 2016 Elsevier B.V. All rights reserved.

Keywords: Markov process; Hidden Markov model; Hypoelliptic diffusion; Stochastic Lyapunov function; Discrete spectrum

1. Introduction

Consider a continuous-time Markov process $\Phi = \{\Phi(t) : t \ge 0\}$ taking values in an open, connected subset X of \mathbb{R}^d , equipped with its associated Borel σ -field \mathcal{B} . We begin by assuming

* Corresponding author.

http://dx.doi.org/10.1016/j.spa.2016.11.004

E-mail addresses: yiannis@aueb.gr (I. Kontoyiannis), meyn@ece.ufl.edu (S.P. Meyn).

^{0304-4149/© 2016} Elsevier B.V. All rights reserved.

that Φ is a diffusion; that is, it is the solution of the stochastic differential equation,

$$d\Phi(t) = u(\Phi(t))dt + M(\Phi(t))dB(t), \quad t \ge 0, \ \Phi(0) = x,$$
(1)

where $u = (u_1, u_2, ..., u_d)^T : X \to \mathbb{R}^d$ and $M : X \to \mathbb{R}^d \times \mathbb{R}^k$ are locally Lipschitz, and $B = \{B(t) : t \ge 0\}$ is k-dimensional standard Brownian motion. [Extensions to more general Markov processes are briefly discussed in Section 1.4.] Unless explicitly stated otherwise, throughout the paper we assume that:

The strong Markov process Φ is the unique strong solution of (1) with continuous sample paths. (A1)

The distribution of the process Φ is described by the initial condition $\Phi(0) = x \in X$ and the transition semigroup $\{P^t\}$: For any $t \ge 0, x \in X, A \in \mathcal{B}$,

$$P^{t}(x, A) \coloneqq \mathsf{P}_{x}\{\Phi(t) \in A\} \coloneqq \Pr\{\Phi(t) \in A \mid \Phi(0) = x\}.$$

Recall that the kernel P^t acts as a linear operator on functions $f : X \to \mathbb{R}$ on the right and on signed measures ν on (X, \mathcal{B}) on the left, respectively, as,

$$P^{t}f(x) = \int f(y)P^{t}(x, dy), \qquad \nu P^{t}(A) = \int \nu(dx)P^{t}(x, A), \quad x \in \mathsf{X}, A \in \mathcal{B},$$

whenever the above integrals exist. Also, for any signed measure ν on (X, \mathcal{B}) and any function $f : X \to \mathbb{R}$ we write $\nu(f) := \int f d\nu$, whenever the integral exists. In this paper we will constrain the domain of functions f to a Banach space defined with respect to a weighted L_{∞} norm.

One of the central assumptions we make throughout the paper is the following regularity condition on the semigroup:

The transition semigroup admits a continuous density: There is a
continuous function
$$p$$
 on $(0, \infty) \times X \times X$ such that,
 $P^{t}(x, A) = \int_{A} p(t, x, y) dy, \quad x \in X, A \in \mathcal{B}.$ (A2)

Hörmander's theorem [29, Thm. 38.16] gives sufficient conditions for (A2). Explicit bounds on the density are also available; see [26] and its references.

1.1. Irreducibility, drift, and semigroup approximations

The ergodic theory of continuous-time Markov processes is often most easily addressed by translating results from the discrete-time domain. This is achieved, e.g., in [8,22,23,21] through consideration of the Markov chain whose transition kernel is defined by one of the *resolvent kernels* of Φ , defined as,

$$R_{\alpha} := \int_0^\infty e^{-\alpha t} P^t dt, \quad \alpha > 0.$$
⁽²⁾

In the case $\alpha = 1$ we simply write $R := R_1 = \int_0^\infty e^{-t} P^t dt$, and call R "the" resolvent kernel of the process Φ .

The family of resolvent kernels $\{R_{\alpha}\}$ is simply the Laplace transform of the semigroup, so that each R_{α} admits a density under (A2). This density will not be continuous in general, so we

Download English Version:

https://daneshyari.com/en/article/5130044

Download Persian Version:

https://daneshyari.com/article/5130044

Daneshyari.com