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a b s t r a c t

A model for the unsteady rise and deformation of non-oscillating bubbles under buoyancy force at high

Reynolds numbers has been implemented using a boundary element method. Results such as the

evolution of the bubble shape, variations of the transient velocity with rise height and the terminal

velocity for different size bubbles have been compared to recent experimental data in clean water and

to numerical solutions of the unsteady Navier–Stokes equation. The aim is to capture the essential

physical ingredients that couple bubble deformation and the transient approach towards terminal

velocity. This model requires very modest computational resources and yet has the flexibility to be

extended to more general applications.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Results of experiments pertaining to bubble rise in a variety of
liquids and liquid mixtures have been reviewed recently by Loth
[1]. Magnaudet and Eames [2] summarised various theoretical
and empirical approaches to the problem of bubble motion at
high Reynolds numbers. The focus of this paper is on modelling
the behaviour of rising bubbles in clean water for equivalent
bubble diameters up to � 4 mm or Reynolds number up to
� 1000. The aim is to predict the transient rise velocity and
corresponding deformation of initially spherical bubbles under
the influence of buoyancy forces. The well-known summary of
terminal velocity, U, versus equivalent bubble diameter, d, in
clean and unpurified water of Clift et al. [3] (Fig. 1) provides a
good visual overview. Also shown in this figure are theoretical
results for a spherical bubble corresponding to the Hadamard–
Rybczynski (HR) formula [4]: U ¼ 4rgd2=3m valid for Stokes flow;
the Levich formula [5–7]: U ¼ 4rgd2=9m valid in the limit of
infinite Reynolds number, Re¼ rUd=m-1; and the empirical
correlation formula given by Magnaudet and Eames [2] which has
been constructed from the results of Mei et al. [8] and Moore [9]
(together denoted as MM) to fit experimental data for spherical
bubbles in the range 0rRer500. Here r is the water density, m
the dynamic shear viscosity and g the gravitational acceleration.
All these theoretical results assume the zero tangential stress
boundary condition at the surface of a spherical bubble which is

appropriate for experiments conducted in highly purified water. It
is well known that rising bubbles in ultra clean water follow a
rectilinear path until a critical equivalent diameter of about 2 mm
when the terminal velocity attains a local maximum, and beyond
which the bubble path can zig-zag or spiral. However, the
terminal velocity in the rectilinear regime is very sensitive to
even trace amounts of contamination so it is important to cross-
validate experimental data from a number of independent sources
and ascertain that the measurements are free from artifacts.

Recently, Malysa et al. [10] measured the transient rise of
deformed bubbles of equivalent diameter between 1.35 and
1.43 mm (around the location of the velocity maximum in Fig. 1)
in ultra clean water. The observed terminal velocity of 35 cm/s
(which corresponds to a Reynolds number of about 500) is in
excellent agreement with the experiments of Duineveld [11] and
Wu and Gharib [12] who measured the terminal velocities of
deformed bubbles in clean water in the range of equivalent
diameters between 1 and 2 mm. These results are also consistent
with the earlier measurements of Okazaki [13]. This range of
bubble size is of particular significance in mineral flotation
applications [14] and many other industrial processes.

With small amounts of added surfactants, Malysa et al. [10]
reported that the terminal velocity for same sized bubbles fell to
15 cm/s, which again is in excellent agreement with the observa-
tions of Zhang and Finch [14] and of Wu and Gharib [12] for cases
where the bubbles become contaminated by the bubble genera-
tion method. These small concentrations of added surfactants
render the bubble surface immobile while the interfacial tension
remains unaffected.
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The results of three independent experimental studies by
Duineveld, Malysa et al. and Wu and Gharib on the terminal
oblate ellipsoidal shapes of bubbles in clean water as character-
ized by variations of the aspect ratio with equivalent bubble size
are also in excellent agreement (see Fig. 2b). In the presence of
surfactants or for contaminated bubbles, all three studies reported
lower terminal velocities of the same magnitude ðRe� 200Þ and
the terminal bubble shapes remain nearly spherical. Therefore,
one can be quite confident that these results represent the correct
behaviour of rising bubbles in water under clean, contaminant
free conditions. Taken together with the recent measurements of
the rise of microbubbles in ultra clean water by Parkinson et al.
[15], we have a complete and reliable experimental data set for
the rectilinear rise of spherical and deformed bubbles in water for
Reynolds numbers up to � 500.

Numerical modelling of unsteady rising bubbles using grid-
based numerical methods that take into account deformations in
a self-consistent way has been attempted using both an axi-
symmetric boundary-fitted coordinate formulation [16,17] and a
full three-dimensional solution [18,19] of the Navier–Stokes
equation. Such approaches are quite complex to implement and
are very demanding in terms of computational resources [20].
This places practical limitations on extending them to more
complex and interesting multiphase problems [21] involving, for
example the motion and deformation of multiple bubbles in
response to external fields or to model dynamic interactions
between bubbles and between bubbles and surfaces or interfaces.
A relatively simple, yet accurate model that can accommodate
these complexities at relatively high Reynolds numbers is there-
fore desirable [10].

A promising approach to treat bubble dynamics at high
Reynolds number is via a boundary integral formulation that
only uses the properties of the bubble surface to track its
evolution. In addition to computational efficiencies conferred by
the reduction of one spatial dimension, the focus on the boundary
means that interactions between bubbles and surfaces that may
involve short-ranged surface forces can be included without
complex implementation issues associated with obtaining a
sufficiently accurate resolution of a deforming air/water interface
in grid-based computational schemes.

The boundary integral method has been used in the past
to simulate models involving deformable rising bubbles.
Miksis et al. [22] considered potential flow and obtained shapes
and terminal velocities but did not consider transient behavior.

Boulton-Stone et al. [23] and Blake et al. [24] considered the
transient motion of one bubble or a pair of bubbles rising in the
absence of viscosity effects and so did not address the question of
terminal velocities.

The theory considered in this paper is motivated by the
boundary integral formulation by Lundgren and Mansour [25],
appropriate at high Reynolds numbers, to study weak viscous
effects on the oscillation of a liquid drop in a gravity-free
environment. However, for the rising bubble problem, we include
a gravitational body force at the outset. The aim is to produce a
theory that can describe the evolution of the position, velocity and
deformations of the bubble surface in a self-consistent way. At
high Reynolds number, the viscous potential flow approach [26] is
able to predict the exact limiting forms of the terminal velocities
of spherical and ellipsoidal bubbles using a viscous correction due
to Joseph and Wang [27] for the viscous pressure. Here we extend
this approach to estimate bubble deformations and transient
effects. As we shall see, the self-consistent bubble shapes so
obtained are close to perfect oblate ellipsoids, therefore we expect
this approach will yield quantitatively correct results. The
practical utility of this approach is illustrated by comparing
predictions of this approach with experimental results summar-
ized earlier.

2. Formulation

The velocity field u of an incompressible Newtonian fluid
obeys the Navier–Stokes equation [28]

r @u

@t
þru � ru¼�rpþmr2u�rg ð1Þ

and the conservation of mass condition r � u¼ 0, where p

represents the pressure, t the time and g the body force acting
on the fluid due to gravity. The boundary condition at the surface
of the bubble is given by the Young–Laplace equation for which
the difference in normal stress across the bubble surface is
balanced by the product of the interfacial tension, s and the local
mean curvature, k:

pin�pþ2m @un

@n
¼ sk ð2Þ

where pin is the internal pressure of the bubble, un is the normal
component of the velocity and n is the unit outward normal
directed into the fluid. In the above equation, @=@n¼ n � r
represents the normal derivative. We also assume the bubble
surface is fully mobile so that the tangential stress vanishes.

We employ the exact Helmholtz decomposition: u� upþv¼
rfþv, where u is written as a sum of an irrotational field, rf
(with f the velocity potential) and a rotational field, v. Eq. (1) can
then be recast as

r r @f
@t
þ

1

2
rjrfj2þpþpvþrgz

� �
¼ 0 ð3Þ

where the viscous pressure, pv is given by

rpv � r
@v

@t
þrðv � rÞðrfÞþrðrf � rÞvþrv � rv�mr2v ð4Þ

At high Reynolds numbers, the irrotational part of the velocity
rf provides a uniformly valid leading order approximate solution
to the velocity field so that @un=@nffi@2f=@n2 [29]. The evolution
of the potential and the position X of an element of the bubble
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Fig. 1. Numerical results of the terminal velocity of deformable bubbles predicted

by the present model and by the full 3D solution of the unsteady Navier–Stokes

equation of Hua et al. are compared to experimental data summarised by Clift

et al. [3]. Familiar theoretical results for spherical bubbles are also plotted. See text

for details.
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