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Abstract

We consider a one-dimensional recurrent random walk in random environment (RWRE) when the
environment is i.i.d. with a parametric, finitely supported distribution. Based on a single observation of
the path, we provide a maximum likelihood estimation procedure of the parameters of the environment.

Unlike most of the classical maximum likelihood approach, the limit of the criterion function is in
general a non degenerate random variable and convergence does not hold in probability. Not only the leading
term but also the second order asymptotic is needed to fully identify the unknown parameter. We present
different frameworks to illustrate these facts. We also explore the numerical performance of our estimation
procedure.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Since the pioneer works of Chernov [8] and Temkin [21], random walks in random
environments (RWRE) have attracted many probabilists and physicists, and the related literature
in these fields has become richer and source of fine probabilistic results that the reader may find
in surveys including Hughes [15] and Zeitouni [22]. Introduced originally by Chernov [8] as a
model for DNA replication, RWRE were recently used by Baldazzi et al. [6,5] and Andreoletti
and Diel [3] to analyze experiments on DNA unzipping, pointing the need of specific statistical
procedures. The literature dealing with the statistical analysis of RWRE is far from being rich and
we aim at making a contribution to the inference of parameters of the environment distribution
for a one-dimensional nearest neighbor path.

1.1. The model

Let ω = (ωx )x∈Z be an independent and identically distributed collection of (0, 1)-
valued random variables with a parametric distribution ηθ . The process ω represents a random
environment in which the random walk evolves. Denote by Pθ = η⊗Z

θ the law on (0, 1)Z of ω
and by Eθ the expectation under this law.

For fixed environment ω, let X = (X t )t∈Z+
be the Markov chain on Z+ starting at X0 = 0

and with transition probabilities Pω(X t+1 = 1|X t = 0) = 1, and for x > 0

Pω(X t+1 = y|X t = x) =

ωx if y = x + 1,
1 − ωx if y = x − 1,
0 otherwise.

For simplicity, we stick to the RWRE on the positive integers reflected at 0, but our results apply
for the RWRE on the integer axis as well. The symbol Pω denotes the measure on the path space
of X given ω, usually called quenched law. The (unconditional) law of X is given by

Pθ (·) =


Pω(·)dPθ (ω),

this is the so-called annealed law. We write Eω and Eθ for the corresponding quenched and
annealed expectations, respectively.

In this work we restrict the model to environments with finite support of the form

ηθ =

d
i=1

piδai , (1)

with d an integer, p = (pi )1≤i≤d a probability vector and a = (ai )1≤i≤d the ordered support. We
further assume that d ≥ 2 is known, and the unknown parameter is θ = (a,p).

This framework already reveals the main features of the estimation problem and also covers
some interesting applications, such as a DNA-unzipping model.

1.2. Motivating example: DNA-unzipping model

The DNA molecule is a double strand of the nucleotides base pairs. Denote one strand of the
DNA chain by (b1, b2, . . .), where bx ∈ {A,C,G, T } is the x th base. The corresponding base on
the other strand is determined by the pairing rule: A can only be paired with T while G can only
be paired with C .
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