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Abstract

We consider the one-dimensional KPP-equation driven by space–time white noise and extend the
construction of travelling wave solutions arising from initial data f0(x) = 1 ∧ (−x ∨ 0) from (Tribe,
1996) to f0 non-negative continuous functions with compact support. As an application the existence of
travelling wave solutions is used to prove that the support of any solution to the SPDE is recurrent. As a
by-product, several upper measures are introduced that allow for a stochastic domination of any solution to
the SPDE at a fixed point in time.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Motivation

Consider non-negative solutions to the one-dimensional stochastic partial differential equation
(SPDE)

∂t u = ∂xx u + θu − u2
+ u

1
2 dW, t > 0, x ∈ R, θ > 0 (1.1)
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u(0, x) = u0(x) ≥ 0,

where W = W (t, x) is space–time white noise and θ > 0 a parameter. The deterministic part of
this SPDE is (after appropriate scaling, cf. Mueller and Tribe [13, Lemma 2.1.2]) the well-studied
Kolmogorov–Petrovskii–Piskunov-(KPP)-equation (also known as the Kolmogorov- or Fisher-
equation). In Bramson [2] the existence of a family of non-negative travelling wave solutions to
this deterministic partial differential equation (PDE) is established. Including the noise term, one
can think of u(t, x) as the density of a population in time and space. Leaving out the term θu−u2,
the above SPDE is the density of a super-Brownian motion (cf. Perkins [15, Theorem III.4.2]), the
latter being the high density limit of branching particle systems that undergo branching random
walks. The additional term of θu models linear mass creation at rate θ > 0, −u2 models death
due to overcrowding. In [14], Mueller and Tribe obtain solutions to (1.1) as limits of densities of
scaled long range contact processes with competition. The same techniques can be extended to
obtain solutions to SPDEs with more general drift-terms, see Kliem [9].

The existence and uniqueness in law of solutions to (1.1) in the space of non-negative
continuous functions with slower than exponential growth C+

tem, is established in Tribe
[17, Theorem 2.2]. Let τ ≡ inf{t ≥ 0 : u(t, ·) ≡ 0} be the extinction-time of the process. By
[13, Theorem 1], there exists a critical value θc > 0 such that for any initial condition
u0 ∈ C+

c \ {0} with compact support and θ < θc, the extinction-time of u solving (1.1) is
finite almost surely. For θ > θc, survival, that is τ = ∞, happens with positive probability.

Let R0(u(t)) ≡ R0(t) ≡ sup{x ∈ R : u(t, x) > 0}. Then R0(t) = −∞ if and only if τ ≤ t .
Extending arguments of Iscoe [7] one can show that R0(u(0)) < ∞ implies R0(u(t)) < ∞ for
all t > 0. Using R0 as a (right) wavefront marker, we look for so-called travelling wave solutions
to (1.1), that is solutions with the properties

(i) R0(u(t)) ∈ (−∞,∞) for all t ≥ 0, (1.2)

(ii) u(t, · + R0(u(t))) is a stationary process in time. (1.3)

In [17, Section 3] the existence of travelling wave solutions to (1.1) is shown, in [17, Section 4]
it is established that for θ > θc any travelling wave solution has an asymptotic (possibly random)
wave speed

R0(u(t))/t → A ∈


0, 2θ1/2


for t → ∞ almost surely. (1.4)

Strict positivity of A remains an open problem if θ is not big enough.
To construct a travelling wave, [17] proceeds as follows. Use R1(u(t)) ≡ ln


exp(x)

u(t, x)dx


in place of the wavefront marker R0(t) and take as initial condition f0(x) ≡

1 ∧ (−x ∨ 0) in (1.1). Then the sequence (νT )T ∈N with

νT the law of T −1
 T

0
u(s, · + R1(u(s)))ds (1.5)

is tight and any limit point ν is nontrivial. Starting in u0 with distribution ν, shifted by R0, one
then obtains a travelling wave solution to (1.1).

The investigation of survival properties of solutions to (1.1) is a major challenge, where the
main difficulty comes from the competition term −u2. Without competition, the underlying
“additive property” (cf. [15, pages 167–168 and 159] in the context of Dawson–Watanabe
superprocesses with drift) facilitates the use of Laplace functionals. Including competition, only
subadditivity in the sense of [13, Lemma 2.1.7] holds.
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