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a b s t r a c t

This paper proposes the use of a quasi-linear method of fundamental solution(QMFS) and explicit Euler

method to treat the transient non-linear Poisson-type equations. The MFS, which is a fully meshless

method, often deals with the linear and non-linear poisson equations by approximating a particular

solution via employing radial basis functions (RBFs). The interpolation in terms of RBFs often leads to a

badly conditioned problem which demands special cares. The current work suggests a linearization

scheme for the nonhomogeneous term in terms of the dependent variable and finite differencing in

time resulting in Helmholtz-type equations whose fundamental solutions are available. Consequently,

the particular solution is no longer needed and the MFS can be directly applied to the new linearized

equation. The numerical examples illustrate the effectiveness of the presented method.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Transient non-linear Poisson problems are widely encountered
in the modeling of physical phenomena. For example, transient
heat conduction or mass diffusion with source terms arises in
model equations in many different areas of computational physics
and engineering. Representative prototype problems include
transient diffusion with chemical reaction in a catalyst pellet,
microwave heating process, spontaneous combustion, and ther-
mal explosion problems and transient convection.

The numerical solution procedure usually depends on finite-
difference, finite-element, boundary-element or spectral meth-
ods. The boundary element method (BEM) is one such method
suitable for linear problems [1,2]. For transient problems, the BEM
can be used in conjunction with finite differencing in time [3,4].
The resulting formulation is a steady-state type of Poisson
equation that can be solved by dual reciprocity methods (DRM)
[1]. Thus, the advantages of the boundary only discretization are
retained, and the internal points are needed only for the
interpolation of the nonhomogeneous terms. The disadvantage
of all the BEM-based techniques is the need for the evaluation of
singular or near-singular integral which can be time consuming.

As an alternative, solution methods based on the method of
fundamental solution (MFS) are gaining considerable attention
[5,6]. These methods are based on fitting of the boundary
conditions with the fundamental solutions of the Laplace
equation as the basis functions [7,8]. The poles or singularities

of the fundamental solutions are placed outside the domain, thus
avoiding the need for evaluation of the singular integrals in
contrast to traditional BEM. Similar to the BEM the MFS is in
disadvantage when the fundamental solution of the underlying
equation is not available. In this case a part of the equation, whose
fundamental solution is provided, is considered as a homoge-
neous equation for which the MFS can be directly applied and the
global solution is then obtained by assembling a particular
solution and the homogeneous solution [9,10]. This method has
been demonstrated for various linear differential equations and in
conjunction with the method of particular solutions for non-linear
Poisson problems [11,12]. In view of the rapid development of the
MFS-RBF method in recent years, the applications to transient
problems would be interesting. However, the application of the
MFS-RBF method to transient problems has been limited. For
linear transient problems, procedures based on finite differencing
in time need to be used [13]. The simplest method is to use an
explicit Euler method for approximating the time derivatives, and
a paper by Golberg and Chen [14] provides a detailed computa-
tional study based on this approach. Also, the forcing function f

was approximated at the previous time step in their study. The
explicit scheme presented in their study is first-order accurate
and has stability restrictions.

The use of RBFs usually leads to an ill-conditioned problem.
There have been some approaches including preconditioning,
locally supported RBFs [15] and domain decomposition [16] to
treat the conditioning. In addition, the use of Hermite interpola-
tion, called osculatory RBF (OS-RBF) has been proposed to
improve the interpolation quality [13,17].

To avoid ill-conditioning, this work proposes a quasi-linear
MFS (QMFS) and explicit Euler method for approximating the
time derivatives for non-linear transient Poisson problems, as a
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function of the dependent variable, is linearized [18,19]. The
resulting linear terms together with the homogeneous term form
a Helmholtz equation whose fundamental solution is already
known. As a consequence, the particular solution method is
avoided and the use of RBFs is not required.

A brief outline of this paper is as follows. In Section 2, the MFS
for linear PDEs is reviewed. A generalization of the QMFS for non-
linear Poisson equations is discussed in Section 3. The Euler
method will be described and applied to QMFS to deals with heat
equations in Section 4. Some numerical experiments will be
presented in Section 5.

2. The method of fundamental solution

In this section we briefly describe the MFS for the homo-
geneous PDE [7]

LuðPÞ ¼ 0, PAO, ð1Þ

with the combined BCs

Dirichlet : u¼ u over G1,

Neumann :
@u

@n
¼ q over G2, ð2Þ

where L is a linear differential operator, O is a bounded domain in
R2 or R3, enclosed by G, G1þG2 ¼G and u and q are known
functions. The major tool in the MFS is the fundamental solution
used in the classical BEM. The fundamental solution of Eq. (1) is a
function G(P,Q) which satisfies

LGðP,Q Þ ¼�dðP,Q Þ, P,Q ARn, n¼ 2,3, ð3Þ

where dðP,Q Þ represents the dirac delta function acting at point Q.
For instance when L is the Laplace operator, G(P,Q) is given by
GðP,Q Þ ¼ ð1=2pÞln1=JP�QJ and GðP,Q Þ ¼ 1=4pJP�QJ, respectively,
for two- and three-dimensional cases. The function G(P,Q) is equal
to zero everywhere except when P¼Q where it is singular and
goes to infinity. The main idea in the MFS is to express the
solution in terms of the fundamental solutions as

uðPÞ ¼
Xn

i ¼ 1

aiGðP,QiÞ, ð4Þ

or in a simpler form

uðPÞ ¼
Xn

i ¼ 1

aiGðriÞ, ð5Þ

where ri ¼ JP�QiJ, Qi’s represent the source points and P is any
point under consideration. Since G(ri) satisfies (3) for any source
point Qi for which ria0, LG(ri)¼0 is satisfied. Consequently, the
function u(P) in (5) exactly satisfies the PDE in (1) for any ai

provided that the source points are selected in a way that ria0. In
order to achieve this goal, a virtual boundary is employed and the
source points Qi are selected on this boundary (see Fig. 1).

It should be mentioned that effectiveness of MFS depends
strongly on shape of virtual boundary and distance between the
virtual and physical boundary [6]. Any shape of the virtual
boundaries can be, theoretically, used in the calculation. However,
due to the limitation of computers inherent precision, the
shape of the virtual boundary may influence the numerical
accuracy of the output results. It is proved that circular virtual
boundary and similar virtual boundary are suitable for MFS. Based
on these two schemes, for example, the shapes of a virtual
boundary can be chosen as either rectangle or circle for a
rectangular domain. From the point of view of computation,
accuracy of the numerical results will become worse if the
distance between the virtual boundary and physical boundary is

too close, that may cause problems due to singularity of the
fundamental solutions. Conversely, round-off error in C/Fortran
floating point arithmetic may be a serious problem when the
source points are far from the real boundary.

Since the function u(P) is only an approximation to the solu-
tion on the boundary, the boundary residual can be introduced as
below:

R1 : u�ua0 over G1,

R2 :
@u

@n
�qa0 over G2: ð6Þ

To evaluate the unknown parameters ai, there are some approaches,
two important of which are collocation [6] and Galerkin methods
[20]. In the collocation method, which is employed in this work, n

collocation nodes are selected on the real boundary (see Fig. 1)
and the residual is set to zero at each collocation point. This
results in a linear system of equations whose solution provides
the unknown values of ai. In the Galerkin method, the residual is
forced to zero by a weighted residual technique using Gi as
weighting functions, that isZ
G1

Giðu�uÞdGþ
Z
G2

Gi
@u

@n
�q

� �
dG¼ 0,

which again leads to a linear system of equations.

3. Quasi-linear MFS

We now briefly describe the QMFS and apply a linearization
technique to deal with the non-linear Poisson-type equations
[19]. We consider the Poisson equation

r
2
ðuÞ ¼ f ðuÞ, with the boundary conditions

u¼ u on G1,
@u

@n
¼ q on G2,

8<
:

ð7Þ

where G¼G1þG2 is the boundary of the problem. Using a linear
Taylor polynomial, we quasi-linearize the non-linear function f(u)
over the domain O at ~u, that is

f ðuÞ ¼ f ð ~uÞþðu� ~uÞ
df

du

����
~u

, or f ðuÞ ¼ k1þk2u, ð8Þ

where ~u is a suitably defined average value of u over O, and k1 and
k2 are constants quasi-linearization which are specified as
follows:

k1 ¼ f ð ~uÞ�
df

du

� �����
~u

~u and k2 ¼
df

du

� �����
~u

: ð9Þ

Using (8), Eq. (7) is converted to

r
2
ðuÞ ¼ k1þk2u: ð10Þ

Fig. 1. The physical and virtual boundary with the collocation and source points

displayed.
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