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a b s t r a c t

The regular hybrid boundary node method (RHBNM) is a new technique for the numerical solutions of

the boundary value problems. By coupling the moving least squares (MLS) approximation with a

modified functional, the RHBNM retains the meshless attribute and the reduced dimensionality

advantage. Besides, since the source points of the fundamental solutions are located outside the

domain, ‘boundary layer effect’ is also avoided. However, an initial restriction of the present method is

that it is only suitable for the problems which the governing differential equation is in second order.

Now, a new variational formulation for the RHBNM is presented further to solve the biharmonic

problems, in which the governing differential equation is in fourth order. The modified variational

functional is applied to form the discrete equations of the RHBNM. The MLS is employed to approximate

the boundary variables, while the domain variables are interpolated by a linear combination of

fundamental solutions of both the biharmonic equation and Laplace’s equation. Numerical examples for

some biharmonic problems show that the high accuracy with a small node number is achievable.

Furthermore, the computation parameters have been studied. They can be chosen in a wide range and

have little influence on the results. It is shown that the present method is effective and can be widely

applied in practical engineering.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Many physical problems are modeled by the biharmonic
equation, particularly those arising in fluid dynamics and
elasticity problems. For example, the governing equations of
Stokes flow problems and flows through porous media are
biharmonic functions. The biharmonic functions also arise when
dealing with the transverse displacements of plates and shells.
As the geometrical, boundary and loading conditions may be very
complex, it is usually difficult to obtain the analytical solutions.
Therefore, the studies on numerical methods for solving this kind
of biharmonic equation make great significance to practical
engineering.

In many cases, the boundary element method (BEM) has been
applied for solving the biharmonic problems more than the
methods of domain types, e.g. the finite element method (FEM) or
the finite difference method (FDM). The indirect BEM was first
used by Jaswon et al. [1]. Later, Kelmanson [2] applied a direct
BEM to a variety of biharmonic problems which involve boundary
singularities. However, the BEM still requires boundary discreti-
zation, which may cause some inconvenience in the implementa-

tion, such as tackling complicated boundary problems and
moving boundary problems.

In recent years, some novel computational methods called
meshless methods have been developed. These methods do not
require elements and thus attract more and more attention. They
have many advantages, such as flexibility, efficiency and versa-
tility for complex geometry. The meshless methods are a great
variety and may be divided into two categories: domain-type and
boundary-type methods. Several domain-type meshless methods,
such as: the diffuse element method (DEM) [3], the element-free
Galerkin (EFG) method [4], the reproducing kernel particle
method (RKPM) [5], the point interpolation method (PIM) [6],
the meshless local Petrov–Galerkin (MLPG) method [7,8], have
been proposed and achieved remarkable progress in solving a
wide range of practical engineering problems. The boundary-type
meshless methods proposed include the local boundary integral
equation (LBIE) method [9], the boundary node method (BNM)
[10], the boundary point interpolation method (BPIM) [11], the
boundary element-free method (BEFM) [12], the Galerkin bound-
ary node method (GBNM) [13] and the boundary face method
(BFM) [14].

The aforementioned meshless methods do not need an
element mesh for the interpolation of the field or boundary
variables, but some of them have to use background cells for
integration. The requirement of background cells for integration
makes the method being not ‘‘truly’’ meshless.
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Zhang et al. [15] proposed another boundary-type meshless
method: the hybrid boundary node method (HBNM). It gets rid of
the background elements and achieves a truly meshless method.
It uses the MLS to approximate the boundary variables, and the
integration is limited to a fixed local region. Elements are required
neither for interpolation nor integration. The HBNM has been
used to solve the potential problems [16] and elasticity problems
[17]. However, it has a drawback of serious ‘boundary layer effect’,
i.e., the accuracy of the results near the boundary is very sensitive
to the proximity of the interior points nearby the boundary. To
avoid this shortcoming, Zhang et al. [18,19] further proposed the
regular hybrid boundary node method (RHBNM), in which
the source points of the fundamental solutions are located outside
the domain rather than on the boundary.

So far, these two methods can only be used for solving certain
elliptic boundary value problems, which the governing differen-
tial equation is in second order, and have never been applied to
solve the fourth order biharmonic problems.

In this paper, a new variation formulation for the RHBNM is
presented to solve biharmonic problems. The RHBNM is based on
a hybrid displacement variational principle and the MLS approx-
imation. For the biharmonic problems, four independent vari-
ables: field function in the domain u, field functions on the
boundary ~u, ~q ¼ ~u ,n and ~M ¼r2 ~u are used in the modified
functional. Then, a new hybrid displacement variation formula-
tion is developed. The present method interpolates the domain
variables using a linear combination of fundamental solutions
of both the biharmonic equation and Laplace’s equation. The
unknown boundary variables, same as the RHBNM for second
order elliptic boundary value problems, are approximated by the
MLS method. Therefore, the RHBNM for biharmonic problems is
achieved.

This paper is organized as follows: the RHBNM for biharmonic
problems is formulated in Section 2. Numerical examples for the
2-D biharmonic problems are given in Section 3. Finally, the paper
ends with conclusions in Section 4.

2. Development of the RHBNM for biharmonic problems

In this section, the following biharmonic problem is consid-
ered:
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u¼ u,r2u�M¼M on G2 ð2bÞ

where the domain O is enclosed by G¼G1+G2; u, q and M are the
prescribed functions and n the unit outward normal.

2.1. Variational principle

The total potential energy can be given as
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As pointed out as before, there are four independent variables
in the variational principle: field function in the domain u, field
functions on the boundary ~u, ~q ¼ ~u ,n and ~M ¼r2 ~u. Eq. (3) should
also satisfy the boundary compatibility conditions

u¼ ~u on G ð4aÞ

q¼ ~q on G ð4bÞ

where u and q are the field functions in the domain but very close
to the boundary.

Introducing the compatibility conditions of Eq. (4) into the
functional expression of Eq. (3), the modified variational func-
tional can be obtained
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Taking the variational of Eq. (5), we have
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Let dP�p ¼ 0, the following integration equations can be
obtained as
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Because u is the prescribed function on the whole boundary
G¼G1+G2, d ~u ¼ 0 and the second integral are vanished in Eq. (7).
Then Eq. (1) is substituted, Eq. (7) can be satisfied. If the boundary
condition ~M ¼Mis imposed, Eq. (11) will also be satisfied. So
Eqs. (7) and (11) can be ignored temporarily in the following
development.

It can be seen that Eqs. (8)–(10) hold for any portion of the
domain O, for example, in a sub-domain Os, which is bounded by
Gs and Ls (Fig. 1). Following Refs. [7,9], the weak forms on a sub-
domain Os and its boundaries Gs and Ls are used to replace
Eqs. (8)–(10). The test function vJ(Q) is used to replace the
variational part. They can be presented asZ
G

S
þ LS

ðu� ~uÞvJðQ ÞdG¼ 0 ð12Þ

Fig. 1. Local domain centered at node sJ and source point of fundamental solution

corresponding to node sI.
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