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a b s t r a c t

The well-known equation for hydrostatic equilibrium in a static spherically symmetric spacetime sup-
ported by an isotropic perfect fluid is referred to as the Oppenheimer–Volkoff (OV) equation or the
Tolman–Oppenheimer–Volkoff (TOV) equation in various General Relativity textbooks or research papers.
We scrutinize the relevant original publications to argue that the former is the more appropriate ter-
minology.
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1. Introduction

The concept of a perfect fluid, one with no viscosity or heat
conduction, is an idealization that serves as a simplifying as-
sumption in many problems, both in pre-relativistic and re-
lativistic physics. Despite being an approximation, it can lead to
quite realistic results in appropriate contexts. At the down-to-
Earth scale, the ideal gases of thermodynamics qualify as perfect
fluids, and at the very large scale, the universe is taken to be filled
with a cosmic perfect fluid whose “atoms” are the galaxies. At the
intermediate scale, the plasma that makes up stars also behaves as
a perfect fluid to a good approximation, and the same is assumed
for stellar bodies other than regular stars, i.e. white dwarfs and
neutron stars.

While small celestial objects (asteroids or small satellites) can
have irregular shapes, large ones are round. The reason is quite
intuitive: deviation from spherical shape will include regions
higher than the average radius, that is, mountains; but a mountain
will tend to spread due to its own weight. On small solid (rocky
and/or icy) objects, gravity is weak, so the strength of the mate-
rials can withstand it, but on objects larger than a few thousand
km in diameter, gravity working over millions of years will smooth
any mountain or depression.

A celestial object made of a perfect fluid, a “star”, by definition
will not be able to support shear stresses, therefore mountains;
hence is expected to be spherical if static, a very intuitive argu-
ment for sphericity. Yet it has proven surprisingly difficult to

rigorously prove spherical symmetry of static perfect fluid stars.
For Newtonian gravity, the proof was given in Carleman (1919);
Lichtenstein (1919) for General Relativity (GR), a complete proof
still does not exist. The conjecture was first explicitly stated in
Lichnerowicz (1955), proven for a certain class of equations-of-
state (EoS – pressure–density relationships) in Masood-ul-Alam
(2007), and for a wider class in Pfister (2011).

When one makes the assumption of spherical symmetry in GR,
the ansatz for the spacetime metric simplifies greatly, hence, so do
Einstein's equations. The problem of finding exact solutions for the
spacetime metric of such a perfect-fluid body was first addressed
in 1939, in back-to-back papers published in Physical Review by
Tolman (1939) and Oppenheimer and Volkoff (1939), hence the
relevant equation, to be rederived in Section 4, is called the Op-
penheimer–Volkoff (OV) or Tolman–Oppenheimer–Volkoff (TOV)
equation. The question of the appropriate choice is the subject of
the present paper.

Of the two dominant textbooks of General Relativity published
in early seventies, “MTW” (Misner, Thorne, & Wheeler, 1973) calls
the equation [Eq. (23.22) of that book] OV, the other, Weinberg
(1972), displays the equation [Eq. (11.1.13) of that book] without
giving it a name, or providing a reference [It does use the term
“Oppenheimer–Volkoff limit” in a different, but related context,
though]. The dominant GR textbook of the next decade, Wald
(1984), calls it [Eq. (6.2.19) of that book] the TOV equation, as does
the quite recent tome of Zee (2013) [Eq. (13) in Section VII.4 of that
book].

In the research literature, the first use of the equation we could
find after 1939 is in Cameron (1959), without giving the equation a
name, but crediting (Oppenheimer & Volkoff, 1939); the use in
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Ambartsumyan and Saakyan (1961) and Bell (1961) [Eq. (2.3) and
chap. 5, Eq. (5) of the respective works] is similar. The work Misner
& Sharp (1964) is the first to use the phrase “Oppenheimer–Volkoff
equations of hydrostatic equilibrium” but does not display the
equation(s). The review article (Fowler, 1964) in the same year
displays the equation, without assigning a name to it, and only
very indirectly crediting Oppenheimer and Volkoff (1939) (but not
Tolman); and a report (Colgate & White, 1964) credits them ex-
plicitly. Starting in 1965, such references increase in frequency;
and in 1968, the first papers appear that both display the equation,
and refer to it by name; except that in two papers, Tolman's name
is also associated with the equation: the work (Sedrakyan &
Chubaryan, 1968) calls a set of displayed equations the “Oppen-
heimer–Volkoff equation”, whereas (Hartle & Thorne, 1968) calls it
the “Tolman–Oppenheimer–Volkoff equation of hydrostatic equi-
librium” and Bludman and Ruderman (1968), the “Tolman–Op-
penheimer–Volkoff condition”. In the same year, Wheeler and
Hansen (1968) use the phrase “Tolman–Oppenheimer–Volkoff
general relativistic equation of hydrostatic equilibrium” without
displaying the equation.

In 1969, we could find no use of the phrase “OV equation” or
equivalent, and two uses of “TOV equation” or equivalent. The
corresponding numbers are one and one for 1970, two and two for
1971, none and four for 1972, and none and four for 1973. We end
the year-by-year breakdown with 1973, the year of publication of
the influential book “MTW”, and give a decade-by-decade break-
down in Table 1.1 We also note that one of the authors of that
appropriately gravitating tome used “OV” in a previous publication
(Misner & Sharp, 1964) and two of them “TOV” in a publication and
a talk (Hartle & Thorne, 1968), (Ruffini & Wheeler, 1970), yet in the
book they used “OV”. On the other hand, the table tells us that the
use of TOV has always been more popular, but started to really
dominate in the last two decades.

To discuss the question of more appropriate usage, in the next
section we describe the setting of the problem. In Section 3, we
review and discuss the first of the relevant papers by Tolman
(1939) , and in Section 4, we review and discuss the second one by
Oppenheimer and Volkoff (1939). In the final section, we evaluate
and conclude.

2. The setting

The question at hand is finding valid solutions for the contents
and structure of a static spherically symmetric spacetime filled
with an isotropic perfect fluid. Of course, the spacetime structure
is assumed to be described by a metric, which obeys Einstein's
Field Equations (EFE)

κ= ( )μν μνG T 1

where μνG is the Einstein tensor, μνT the stress–energy–momentum
(SEM) tensor, and κ the coupling constant, including Newton's
constant G. The relation between μνG and the metric, μνg , is given in
any GR textbook, e.g. Misner et al. (1973), and we use that book's

sign conventions for the definitions of the intermediate mathe-
matical objects, that is, the Riemann and Ricci tensors, and the
Christoffel symbols.

The most general form for the line element of a static spheri-
cally symmetric spacetime is

Ω= − ( ) + ( ) + ( )ds B r dt A r dr r d 22 2 2 2 2

where Ω θ θ ϕ= +d d dsin2 2 2 2 is the metric of a two-sphere; and a
perfect fluid is characterized by a stress–energy–momentum ten-
sor of the form

ρ= ( + ) + ( )μν μ ν μνT p u u pg 3

where ρ and p are the energy density and the pressure, respec-
tively, as measured by an observer moving with the fluid, and μu is
its four-velocity; in units such that the speed of light c¼1. Since
the fluid is at rest, we have

δ= ( )μ μu u 40
0

and of course, the four-velocity is normalized such that

= − ( )μ
μu u 1 5

After these preliminaries, the Einstein equations can be written
down. The nontrivial components (00, 11 and 22) are
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where A(r) and B(r) are written as A and B for brevity, and prime
denotes r-derivative (the 33 component is simply the 22 compo-
nent multiplied on both sides by θsin2 ).

Alternatively, these equations can be combined to give
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which can be used instead of the complicated 22 component, Eq.
(8). This last equation (where we stopped explicitly showing the r-
dependences of p and ρ, as well) could also have been derived
from the local energy–momentum conservation equation, =ν

μνT 0; ,
which in turn follows from the mathematical fact =ν

μνG 0; (the
“contracted Bianchi identity”) and the Einstein equation (1). This is
the well-known statement that in GR, local energy–momentum
conservation is built in.

Whichever set one chooses, {(6)–(8)}, or {(6), (7), (9)}; the EFE
give three equations, but we have four unknown functions. Hence,
another equation is needed to determine a definite solution. It is
the approach to the choice of this extra equation that makes the

Table 1
Approximate numbers of occurrence of the expressions “Oppenheimer–Volkoff
equation” (and equivalents) and “Tolman–Oppenheimer–Volkoff” in the research
literature in each decade since the 1960's.

Decade

Name 60's 70's 80's 90's 00's 10's

OV 2 11 51 102 �200 �140
TOV 6 48 52 181 830 1420

1 The searches were performed using Google Scholar (GS). For the first row, the
phrase “Oppenheimer–Volkoff” was searched for, the expressions “Oppenheimer–
Volkoff limit”, and of course “Tolman–Oppenheimer–Volkoff” were explicitly vetoed,
and the appropriate uses of the expression were counted by visually inspecting the
GS blurbs; the numbers for the last two decades were estimated as roughly 75% of
the total count, based on experience with previous decades. For the second row, the
exact expression was searched, which left out some misspellings (or mis-
identifications of GS's OCR software) of Tolman, and a few instances of “Oppen-
heimer–Volkoff–Tolman” that we had encountered during the scrutiny for the first
row; and added very few extras like “Tolman–Oppenheimer–Volkoff solution”;
therefore should be approximately correct.
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