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Philosophers and scientists alike have suggested Akaike’s Information Criterion (AIC), and other similar
model selection methods, show predictive accuracy justifies a preference for simplicity in model se-
lection. This epistemic justification of simplicity is limited by an assumption of AIC which requires that
the same probability distribution must generate the data used to fit the model and the data about which
predictions are made. This limitation has been previously noted but appears to often go unnoticed by
philosophers and scientists and has not been analyzed in relation to complexity. If predictions are about
future observations, we argue that this assumption is unlikely to hold for models of complex phenomena.
That in turn creates a practical limitation for simplicity’s AIC-based justification because scientists
modeling such phenomena are often interested in predicting the future. We support our argument with
an ecological case study concerning the reintroduction of wolves into Yellowstone National Park, U.S.A.
We suggest that AIC might still lend epistemic support for simplicity by leading to better explanations of
complex phenomena.

© 2016 Elsevier Ltd. All rights reserved.

1. The epistemic value of simplicity in modeling

Philosophers and scientists have long valued simplicity, but the
epistemic justification of this value has been intensely debated.
Over the past two decades, one facet of the debate has focused on
statistical model selection. In a 1994 article, Forster & Sober pro-
posed that Akaike’s Information Criterion (AIC) provided such a
justification by linking simpler models to increased predictive ac-
curacy. Forster & Sober’s proposal has been influential in the phil-
osophical literature,' and their analysis has been extended to topics
such as predictivism (Dowe, Gardner, & Oppy, 2007; Forster, 2002;
Hitchcock & Sober, 2004; Lee, 2013; Sober, 2008). The article has
also enjoyed uptake in the scientific literature (e.g., Ginzburg &
Jensen, 2004) and influential statistical texts (e.g., Burnham &
Anderson, 2002). The proposal has also been criticized on the
grounds that AIC is not invariant under changes in how models are
described or grouped into families (DeVito, 1997; Forster, 1995,
1999b; Kukla, 1995). We raise a distinct and largely undiscussed
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concern that Forster and Sober’s proposal is limited when modeling
complex phenomena because complexity challenges an assump-
tion required by AIC. Our argument has important implications
because AIC is routinely used by modelers studying complex
phenomena.

Forster & Sober note that although models can be formed and
parameters estimated such that a model passes exactly through
every data point, it is common practice to avoid this technique. This
is because “scientists seem to be willing to sacrifice goodness-of-fit
if there is a compensating gain in simplicity” (Forster & Sober, 1994,
p. 5). Techniques that maximize goodness-of-fit without consid-
ering simplicity (e.g., ordinary least squares regression) are some-
times insufficient, as we shall see in Section 2. Moreover, a vague or
subjective notion of simplicity will undermine its epistemic justi-
fication. What is required is a criterion that trades-off fit with
simplicity in an empirically justifiable fashion. Forster and Sober
(1994) argue AIC does exactly this because it improves predictive
accuracy by balancing models’ simplicity and fit to the data.
Drawing a link between AIC and predictive accuracy requires the
assumption that the data used to fit the model and the data for
which predictions are made are generated by the same probability
distribution (Forster, 2000, p. 216). Following Forster & Sober, we
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call this the “uniformity of nature” assumption (Forster & Sober,
1994, p. 29; Sober, 2002, p. S116).?

The uniformity of nature assumption means that Forster & So-
ber’s philosophical justification of simplicity is limited to what
Forster (2002) calls interpolative predictive accuracy, that is, pre-
dictive accuracy for the data to which a model was fit; it does not
extend to extrapolative predictive accuracy. Although mentioned
by Forster and Sober (1994) and discussed by Forster (2000, 2002),
this limitation appears to often go unnoticed by both philosophers
and scientists. Clarifying AIC’s relationship to extrapolative pre-
dictions is crucial because scientists typically understand pre-
dictions to be about the future and predictive accuracy in this sense
is often cited as a goal of AIC (Aho, Derryberry, & Peterson, 2014;
Shmueli, 2010). In addition, neither AIC nor Forster & Sober’s
justification of simplicity have been philosophically analyzed in
relation to modeling complex phenomena, which is surprising
given that AIC is routinely used by modelers working in complex
disciplines such as ecology. Here we use an ecological case study to
show how complexity challenges the uniformity of nature
assumption when model predictions are extrapolated. This case
clarifies how AIC tends not to increase predictive accuracy as many
scientists understand it. We offer the alternative idea that when AIC
is applied to models of complex phenomena, it serves to improve
explanations of past events rather than improve predictions of
future ones. Our argument is relevant not only to ecology, where
the use of AIC is pervasive (Burnham & Anderson, 2002),> but also
to similar disciplines that apply AIC such as sociology (Burnham &
Anderson, 2004) and psychology (Wagenmakers & Farrell, 2004).

The organization of this article is as follows. In Section 2, we
describe AIC and Forster & Sober’s philosophical justification of
simplicity. In Section 3, we use an ecological case study to
demonstrate how complexity threatens the uniformity of nature
assumption. In Section 4, we respond to potential objections to our
argument. In Section 5, we explore the idea that AIC can lead to
better explanations. We conclude our argument in Section 6.

2. AIC and the uniformity of nature assumption

Our discussion turns on the question: how should models be fit
to data? Model fitting has two components. First, a model form
must be chosen. The linear model represents the ‘base’ or simplest
model form*:

y=ax+b+e, (1)

where y is some response variable, x is some predictor variable, a is
the slope, b is the y-intercept, and ¢ is an error term. Models with
higher-level polynomials (e.g., add x° to Eq. (1)) or additional pre-
dictors (x1, X2, etc.) are considered more complex than the linear
model. The choice among competing models is termed model se-
lection. Second, values of a given model’s parameters must be
estimated. For example, a and b in Eq. (1) must be somehow opti-
mized because there are infinitely many straight lines that could be
fit to the data. The process of parameter estimation seeks those
values that make a given model’s predictions most closely match

2 The label “uniformity of nature” is potentially misleading. In the present
context, it only refers to the existence of a single probability density function that
generates data throughout the time period of concern. It is not a claim about the
existence of stable, universal physical laws.

3 This authoritative reference on AIC has 33,413 citations on Google Scholar as of
August 16, 2016.

4 In applied sciences, the term ‘linear model’ can refer to models for which the
response variable is predicted as a function of predictor variables with additive
effects. In Eq. (1), a ‘linear model’ means a straight line.

y = 1.6814x+ 6.6552;R*= 0.87
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Fig. 1. A linear process generates the data (the true model is y = 1.6x + 6), but
observed data include error (normally distributed with a mean of 0 and a standard
deviation of 3). Two models are fit using ordinary least squares: top, a linear function,
and bottom, a fourth-order polynomial function. The polynomial fits the data better (as
indicated by the R? statistic), but will be a poorer predictor of future data from the
(true) linear process.

the data. A simple approach is ordinary least squares, which min-
imizes the squared difference between model predictions and the
data. The maximum likelihood method of parameter estimation is a
generalization of this approach (Burnham & Anderson, 2002) and
differs in that, instead of squared differences, a likelihood function
is used to relate the model to data.

Forster and Sober (1994) note that the naive empiricist should
unequivocally select a more complex model because it will always
minimize the error between the model and the data. To choose a
simpler model that fits the data less well as a mere matter of taste
(cf. Kuhn, 1957, p. 181) would be foolhardy from an empiricist
perspective. The empiricist could prefer the simpler model only if it
provided an epistemic advantage, such as increased predictive
accuracy.

Forster & Sober use the concepts of signal and noise to explain
how a simpler model might make better predictions. The signal is
the true process generating the data and the noise is the observa-
tional error in the data collection process. If we perfectly fit a
complex model to the data, we conflate the signal with the noise
and thereby decrease predictive accuracy due to Type I errors (i.e.,
finding spurious relationships among variables; Freedman, 1983).
Forster & Sober provide an example to support their claim. Suppose

5 Bolker (2008) describes this as finding the parameter values that, given the
model, make the data the “most likely to have happened” (p. 170), but it's important
to emphasize that a likelihood function considers the data fixed and the parameters
variable, not the other way around.
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