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An integral equation domain decomposition method has been implemented in a meshless fashion. The
method exploits the advantage of placing the source point always in the centre of circular sub-domains
in order to avoid singular or near-singular integrals. Three equations for two-dimensional (2D) or four
for three-dimensional (3D) potential problems are required at each node. The first equation is the
integral equation arising from the application of the Green’s identities and the remaining equations are
the derivatives of the first equation in respect to space coordinates. Radial basis function interpolation
is applied in order to obtain the values of the field variable and partial derivatives at the boundary of the
circular sub-domains, providing this way the boundary conditions for solution of the integral equations
at the nodes (centres of circles). Dual reciprocity method (DRM) has been applied to convert the domain
integrals into boundary integrals, though the approach is general and can be applied without the DRM.
The accuracy and robustness of the method has been tested on a convection-diffusion problem. The
results obtained using the current approach have been compared with previously reported results
obtained using the finite element method (FEM), and the DRM multi-domain approach (DRM-MD)
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showing similar level of accuracy.
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1. Introduction

Meshless integral equation approaches are receiving increased
attention due to their accuracy associated with the integral
equation methods, of which the most popular has been the
boundary element method (BEM), and the flexibility they offer as
the meshing requirements are either eliminated or reduced.

The local boundary integral equation (LBIE) was proposed by
Zhu et al. and was applied to Poisson problems [1] and non-linear
problems [2]. In LBIE the domain is sub-divided in a large number
of sub-domains. In the work on LBIE reported so far, the support
of the source point is taken to be a sub-domain in a shape of a
circle though in theory the domain can be of any shape, with the
source point in the centre of the circle. The most often used
interpolation for field variables were the moving least-squares,
though Sellountos and Sequeira [3] used augmented thin plate
spline (ATPS) radial basis functions (RBFs) for interpolation of the
field variable and gradients over the circular boundaries. The
concept of “companion solution” is introduced in order to
eliminate the single layer integral from the local boundary
integral equation. In this way the potential field is the only
unknown in the equations. For source points that are located on
the (global) boundary of the given problem part of the local
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circular boundary is replaced by the part of the global boundary
and the integrals are evaluated over this part of the global
boundary and remaining part of the circle. For nodes on the
boundary of the given problem the single layer integrals are
present in the integral equation. This means that integration over
the boundary must be performed which in a way departs from the
meshless idea of the approach. The gradients of the potential field
appear in the integrals over the boundary of the problem and they
may either be obtained from the original BEM equations or they
can be obtained by differentiating the interpolation function used
to represent the potential over the local boundary.

Recently [3] LBIE has been employed for solution of the
Navier-Stokes equations in combination with the radial basis
functions (RBFs) used for interpolation of the field variables over
the circular boundaries of the sub-domains.

Though the present formulation may seem similar to the LBIE
in certain aspects, overall it is a fundamentally different approach.
Similarly to the LBIE it is implemented over circular sub-domains
where the source points are placed in the centres of the circles.
The work follows the idea of Bui and Popov [4] who proposed
using three equations at each source point for 2D problems solved
using BEM with overlapping sub-domains. One equation is the
original integral equation usually used in the direct formulation
BEM, while the other two equations are the derivatives in respect
to spatial coordinates of the original equation at the source point.
In this work the augmented thin plate spline (ATPS) radial basis
functions (RBFs) were used for interpolation of the field variable
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and gradients over the circular boundaries. This RBF was selected
in order to use the same interpolation function for representing
the field variables and for the approximation in the DRM part of
the formulation. The DRM [5] is used to convert the domain
integrals into integrals over the local circular boundaries. In the
present case the Laplace fundamental solution is used to solve the
convection-diffusion equation. The use of the ATPS in the DRM-
MD has been elaborated elsewhere [6,7]. The present approach
makes use of the DRM-MD since the results of this numerical
scheme showed that this sub-domain BEM approach is very
efficient for a number of different problems [8-14]. The current
formulation is a natural transformation of the existing DRM-MD
towards a meshless scheme by using the idea of Bui and Popov
[4]. Since the proposed approach uses circular sub-domains, the
classical integral equations from the BEM as well as the RBF
interpolation for the field variables and the DRM part, further in
this paper it will be referred to it as the radial basis integral
equation method (RBIEM).

Though RBIEM seems similar to the LBIE because both use
circular sub-domains, except on the global boundary where the
LBIE does not use circular sub-domains, they are different since
the LBIE uses the concept of “companion solution” in order to
avoid solution for the gradients/normal derivatives inside the
problem domain, while the RBIEM solves for the potential and
partial derivatives at each node. This enables the RBIEM to be a
truly meshless approach since the values of the normal deriva-
tives are obtained everywhere including the source points located
on the global boundary of the problem domain. The boundary
conditions in the RBIEM are imposed directly at the source points
on the global boundary. In the RBIEM there is no need for
integration over any part of the global boundary of the problem
domain. The integration is performed over the boundaries of the
circular sub-domains, and since the source point is always in the
centre of the circle, the integrals are regular, regardless of the
order of the derivative, and easy to implement in the computer
code. The matrix coefficients resulting from the integration over
the circular boundaries will be the same and there will be no need
to re-evaluate them for circles with the same radius.

Another important point is that the sub-domain BEM
approaches like DRM-MD and boundary-domain integral method
(BDIM) produce overdetermined systems of equations. The degree
to which the system is overdetermined depends on the geometry
of sub-domains used. This stems from the fact that there are
matching conditions between sub-domains not only for potentials
but for fluxes as well (more details can be found in [12]). While
having continuity for potentials and fluxes is one of the
advantages of the BEM sub-domain approaches in respect to
formulations which preserve continuity for potentials only, e.g.
the Galerkin FEM, the Green element method, having over-
determined system of equations makes the solution process more
complex. The RBIEM always produces a closed system of
equations since the number of equations per node in the interior
of the problem domain is three for 2D and four for 3D problems,
unlike the DRM-MD and BDIM which produce higher number of
equations in the nodes in the interior which are shared by several
sub-domains.

In the current case the RBIEM has been implemented with the
DRM, although in principle it can be implemented with different
numerical schemes, including schemes where the domain
integrals are directly evaluated. This approach is especially
effective in applications where the partial derivatives in respect
to coordinates are required, e.g. the convection-diffusion equa-
tion and the Navier-Stokes equation.

Further in the paper the “global boundary” will mean the
boundary of the given problem and the “local (circular) boundary”
will mean the boundary of the circular sub-domains.

2. The boundary element dual reciprocity method

In this section, the boundary element dual reciprocity method
(DRM) is introduced though the proposed approach will be
effective with other BEM formulations as well. Let us consider the
following equation:
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where u(r) is the potential field, r the position vector, x; the
component of r and t the time. Given a point r inside a domain €,
by applying the Green integral formula Eq. (1) within the domain
Q2 bounded by the boundary I' can be transformed into the
following integral form:
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Here u*(r,¢) is the fundamental solution of the Laplace problem
which is given by
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for a 3D problem, where R is the distance from the point of
application of the concentrated unit source to any other point
under consideration, ie. R=|r-&| and q(&)=ou(&)/on and
q'(r,&)=0u’(r,&)/on. The constant J(r) has value from 0 to 1 being
equal to 1/2 for smooth boundaries and 1 if the source point r is
inside the domain.

The DRM approximation [5] is introduced to transform the
domain integral in (2) in terms of equivalent boundary integrals.
The basic idea is to expand the b(¢) term using approximation
functions, i.e.:
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where f(&,1) is the approximation function which depends on the
location of nodes 7, and o, are unknown coefficients. The
approximation employs J,, nodes on the boundary and J;; nodes
inside the domain.

The most popular choice in the past for the function f{£,5;) in
the DRM approach was [15]

f(& m)=1+Rprm(&, ) (6)

where Rprm(€.4k) is the distance between a pre-specified fixed
collocation point 7, and a field point ¢ where the function is
approximated, i.e. Rprni( &) =& —1i-

The function f given in (6) belongs to a family of functions
called radial basis functions (RBFs), which relate to the multi-
variate function [16]. Micchelli [17] proved that for some
additional conditions and when the nodal points are all distinct,
the matrix resulting from a RBF interpolation is always non-
singular. Therefore, as long as the function b in (1) is regular the
coefficients oy, are well defined. The use of different types of RBFs
in DRM was discussed by Golberg and Chen [18-20].

With the DRM approximation for the non-homogeneous term
b the domain integral in Eq. (2) becomes
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