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a b s t r a c t

The conventional boundary element method (BEM) requires a domain integral in unsteady thermal

stress analysis with heat generation and/or an initial temperature distribution. In this paper, it is shown

that the three-dimensional unsteady thermal stress problem can be solved effectively using the triple-

reciprocity boundary element method without internal cells. In this method, the distributions of heat

generation and initial temperature are interpolated using integral equations and higher order time-

dependent fundamental solutions. A new computer program was developed and applied for solving

several test problems.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The unsteady thermal stress problems cannot be solved easily,
without using internal cells, by the conventional boundary ele-
ment method (BEM), in general. Only special cases of problems,
such as unsteady thermal stress problems with heat generation
and initial temperature distributions being given by harmonic
functions, can be solved by the standard BEM without the need
for internal cells. When an analysis of thermal stress under
arbitrary heat generation or a non-uniform initial temperature
distribution within the domain is carried out by the BEM, a
domain integral is involved in general [1,2]. However, by includ-
ing the domain integral, the merit of BEM is lost, since the
unknowns are not localized on the boundary alone like in pure
BEM. Thus, several other methods have been considered. Nowak
and Neves proposed a multiple-reciprocity method [3,4]. Tanaka
et al. have proposed a dual-reciprocity BEM for transient heat
conduction problems [5], and local integral equations have been
proposed for unsteady heat conduction problems [6,7]. However,
these methods do not employ a time-dependent fundamental
solution, which can improve accuracy of numerical results. A Laplace
transformation can remove the time dependence of the problem,
however, it is not suitable under complicated time-dependent
boundary conditions. Moreover, the Laplace transformation method

requires internal cells for the initial temperature distribution and
finally the numerical inverse transformation.

Recently, the efficient treatment of domain integrals has been
proposed by the triple-reciprocity BEM or improved multi-
reciprocity BEM for steady heat conduction, steady thermal stress
and elastoplastic problems [8–10,20]. The triple-reciprocity BEM
for two-dimensional heat conduction and thermal stress analysis
for an unsteady state has also been proposed [11–13]. In this
paper, the triple-reciprocity BEM is developed for three-
dimensional unsteady heat conduction and quasi-static thermo-
elasticity problems. In this method, the heat generation and initial
temperature distributions are interpolated using the boundary
integral equations. Since the domain integrals are eliminated, no
internal cells are required in the present triple-reciprocity
method and the time-dependent fundamental solutions are
employed. All the higher order fundamental solutions and/or
corresponding integral kernels are derived in closed form includ-
ing the time integrations. Besides the solution of thermoelastic
initial-boundary value problems, the integral representation is
also developed for post-processing computation of stresses at
interior points. A new computer program was developed and
applied for solving several test problems.

2. Governing equations

In the theory of thermal stresses the temperature field is not
influenced by mechanical fields (such as displacements and
stresses) though the latter are affected by temperature gradients.
If we are interested in elastic deformations due to temperature
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gradients, the inertial terms can be omitted because the char-
acteristic frequency of elastic processes is several orders higher
than that of thermal processes. Thus, in quasi-static uncoupled
thermoelasticity, the governing equations for the temperature
T(q,t)and displacements ui(q,t)fields are given as [23,26]
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where w(q,t) is the volumetric density of heat sources per unit
time, and l, k, G, n, a stand for coefficient of heat conduction,
thermal diffusivity, shear modulus, Poisson ratio, coefficient of
linear thermal expansion, respectively. The set of governing
equations should be supplemented by initial and boundary
conditions.

Denoting the Laplace transforms of the field variables with
respect to time by over bars, the governing equations become
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with s being the Laplace transform parameter and T(q,0) is the
distribution of the initial value of temperature specified by initial
conditions. Recall that we shall not develop the integral formula-
tion in the Laplace transform domain, but it will be useful to
utilize these governing equations in the development of the
formulation without domain integral of temperature gradients.

3. Integral representations for solutions

Since the temperature field in the uncoupled thermoelasticity
is not influenced by mechanical fields, one can solve firstly the
initial-boundary value problem for the thermal fields and sub-
sequently for mechanical fields. Starting from the governing
Eqs. (1) and (A.5), one can derive in a standard way the integral
representation of the temperature field:
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where c(p)¼1 for interior point pAO, while for p¼PAG it depends
on the shape of the boundary geometry (c(P)¼0.5 if G is smooth
at P).

Similarly, from (2) and (A.14) one can get the integral repre-
sentation of displacements [24,26]
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where the traction vector is given by pi(Q,t)¼nj(Q)[cijkluk,l(Q,t)�
gdijT(Q,t)] withcijkl ¼ Gð2n=ð1�2nÞÞdijdklþGðdikdjlþdildjkÞ for homo-
geneous and isotropic linear elastic medium. Note that there is no
integration with respect to time in (6) because of quasi-static
approximation.

From the point of view of boundary elements, certain handicap
of both the derived integral formulae (5) and (6) is the appearance
of domain integrals. In what follows, we shall deal with conver-
sion of these domain integrals into boundary ones by using higher
order fundamental solutions and triple reciprocity approxima-
tions of the heat sources and initial temperature.

3.1. Treatment of domain integrals. Triple-reciprocity

approximations

It is well known that if the spatial distribution of the heat sources
w(q,t) were given by a harmonic function, the following conversion
of the domain integral into boundary ones would be applicable:
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where we have utilized the property given by Eq. (A.2) and the
assumption r2w(q,t)¼0. Similar conversion would be applicable
also to domain integral of initial temperature, if the distribution of
this temperature was given by a harmonic function. In what
follows, we shall assume the spatial distributions of the heat
sources as well as the initial temperature without any restrictions.

Let us replace w(q,t) by WS
1ðq,tÞ whose spatial distribution is

governed by

r
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with prescribed values of heat sources wðq,tÞ �WS
1ðq,tÞ at a set of

interior and boundary points. Furthermore, the spatial distribu-
tion of WS

2ðq,tÞ is assumed to be governed by the equation
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where WPA
3 ðqm,tÞ are unknown nodal values at interior points

qmAO and WS
2ðQ ,tÞ ¼ 0 is assumed on the boundary of the

analyzed domain.
Just to remember an analogy [15,16,18–22], substitution of (7)

into (8) yields
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This equation is formally the same as that for the deformation
of a fictitious thin plate with point loads, but now the analyzed
domain is 3D in contrast to the mid-surface of the plate. The
‘‘deformation’’ WS

1ðq,tÞ is given, but the ‘‘forces of the point loads’’
WPA

3 ðqm,tÞ are unknown and can be calculated inversely from the
‘‘deformation’’ WS

1ðq,tÞ of the fictitious thin plate. The ‘‘bending
moment’’ WS

2ðQ ,tÞ is vanishing.
Similarly, the distribution of the initial temperature T(q,0) can be

approximately replaced by T0S
1 ðqÞ which is interpolated as follows:
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with T0S
1 ðqÞ being known at boundary nodes and at the set of

interior points qmAO (m¼1, 2, ...,M), while T0S
2 ðQ Þ ¼ 0 is assumed on

the boundary of the analyzed domain.
Now, we reformulate the governing Eqs. (7) and (8) into

integral equations. Making use of the polyharmonic fundamental
solutions of the Laplace operator with properties (A.2), one can
derive the integral equations:
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