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a b s t r a c t

The fracture behavior of particulate composite materials when subjected to dynamic loading has been a

great concern for many industrial applications as these materials are particularly susceptible to impact

loading conditions. As a result, many numerical and experimental techniques have been developed to

deal with this class of problems. In this work, the fracture behavior of particulate composites under

impact loading conditions is numerically studied via the two most important fracture parameters:

dynamic stress intensity factors (DSIFs) and dynamic T-stress (DTS), and the results are compared

with the experimental data obtained in Refs. [1,2]. Here, micromechanics models (self-consistent,

Mori–Tanaka, y) or experimental techniques need to be employed first to determine the effective

material properties of particulate composites. Then, the symmetric-Galerkin boundary element method

for elastodynamics in the Fourier-space frequency domain is used in conjunction with displacement

correlation technique to evaluate the DSIFs and stress correlation technique to determine the DTS. To

obtain transient responses of the fracture parameters, fast Fourier transform (FFT) and inverse FFT are

subsequently used to convert the DSIFs and DTS from the frequency domain to the time domain. Test

examples involving free–free beams made of particulate composites are considered in this study. The

numerical results are found to agree very well with the experimental ones.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Composite materials are particularly susceptible to impact
loading conditions in which loads are applied rapidly, randomly or
deliberately such as those seen in aerospace, automotive, production,
or construction industries, etc. As a result, it is important to
understand the fracture behavior of composite materials under these
loading conditions. Conventional theories suggest that the fracture
behavior can be assumed by the crack initiation, propagation and
branching in the vicinity of a crack tip. The two important fracture
parameters which can be used to describe the dynamic fracture
behavior are the dynamic stress intensity factors (DSIFs) and
dynamic T-stress (DTS). Therefore, many numerical and experimental
techniques have been developed to study these parameters.

To determine the DSIFs and DTS experimentally, one needs to
measure the crack tip deformations during a dynamic fracture
event at high spatial and temporal resolutions. In the past
the focus has been primarily with the accurate evaluation of the
former although a few reports have addressed DTS measurements
in recent years. The works which have focused on DSIF

measurements include those of Dally [3] who used photoelasticity
and high-speed photography. Tippur and co-workers [4–7] have
used coherent gradient sensing (CGS) method to study the
dynamic fracture behavior of a variety of composite materials.
Kokaly et al. [8] have used moiré interferometry along with high-
speed photography to study aluminum alloys.

The recent advances in high-speed digital imaging at recording
rates exceeding a million frames per second has made it feasible to
study fast-fracture events using other methods and improve the
accuracy of measured fracture parameters. Recently, Kirugulige and
co-workers [1] used the method of digital image correlation (DIC)
and high-speed photography for the measurement of transient
deformations near a crack under dynamic loading. In their work,
random speckle patterns on a specimen surface before and after
deformation are acquired, digitized and stored. In the undeformed
image, subimages are chosen and the locations of similar subimages
are identified on the deformed image. Once the subimages are found
in the deformed image, the displacements can be easily estimated.
The obtained displacements are processed using least-squares
method to extract the DSIFs and DTS using asymptotic crack tip
field expressions. The measurement of these fracture parameters are
shown to favorably compare with their finite element analysis
results. Moving from the photographic methods, Jiang et al. [9] used
split-Hopkinson pressure bar apparatus to find the dynamic
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responses in a pre-cracked specimen. They derived simple formula
to find the DSIFs from dynamic responses using vibration analysis
method. Ivanyts’kyi et al. [10] applied dynamic torsion on a
cylindrical specimen with an external circular crack and proposed
a combined numerical and experimental method to determine the
DSIFs. Due to the significant influence of the T-stress on crack path
and crack growth direction, more and more experimental methods
devoted to the measurement of this parameter can be found in the
literature. For example, Maleski et al. [11] measured the T-stress
under both static and dynamic loading conditions by optimal
positioning of stacked strain gage rosette near a mode-I crack tip.

On the numerical modeling side, several numerical methods
have been developed to determine the DSIFs such as finite
difference method (FDM, e.g., [12]), finite element method
(FEM, e.g., [13]), boundary element method (BEM, e.g., [14]),
symmetric-Galerkin boundary element method (SGBEM, e.g.,
[15,16]) and scaled boundary finite element method (SBFEM,
e.g., [17]). In Ref. [15], boundary integral equations (BIEs) for
elastodynamics in the frequency domain are employed in
conjunction with a modified quarter-point crack-tip element
and displacement correlation technique (DCT) to accurately
calculate the DSIFs. A conversion of the frequency DSIFs to those
in the time domain is done by using fast Fourier transform (FFT)
and inverse FFT (IFFT) as described in Ref. [16]. Numerous
numerical methods such as FEM (e.g., [18]), BEM (e.g., [19]),
SGBEM (e.g., [20,21]), and SBFEM (e.g., [22]) have also been used
for determining the T-stress, while SBFEM (e.g., [22]), SGBEM
(e.g., [23]), and BEM (e.g., [24]) for the DTS. Phan [21] developed a
non-singular boundary integral formulation based upon a stress
correlation technique for evaluating the T-stress and the techni-
que is extended to cover the DTS in Ref. [23]. Song and Vrcelj [22]
extended the SBFEM to evaluate the DSIFs and DTS for two
dimensional problems without any requirement of internal mesh
and asymptotic solution close to the singular point. Sladek et al.
[24] used BEM to express path independent integral (M-integral)
formulation through the dynamic J-integrals for determining the
DTS on the basis of relation found between the M-integral and
T-stress. A comparison was conducted to the DTS values
computed by the M-integral, boundary layer and displacement
field methods for a rectangular plate with a central crack.

BEM have been recognized as an effective technique for
fracture analysis (e.g., [25]). The key feature of the BEM is that
only the boundary of the domain is discretized. This implies that,
for fracture analysis, the singular stress field ahead of the crack is
not approximated, and that remeshing a propagating crack is an
easier task. Among the variants of the BEM, SGBEM (e.g., [26]) has
several additional advantages: (a) its coefficient matrix is
symmetric as the name implies; (b) the use of both displacement
and traction BIEs enables fracture problems to be solved without
artificial sub-domains; and (c) unlike most variants of the BEM,
standard continuous elements can be employed. Thus, SGBEM can
easily exploit highly effective quarter-point quadratic elements
(e.g., [27]) to accurately capture the crack tip behavior.

In addition to important developments of the SGBEM for stress
and fracture analysis in elastostatics, the SGBEM for elastody-
namics in the Fourier-space frequency domain has recently been
extended to fracture applications [15,16,24]. Following an SGBEM
fracture analysis in the frequency domain, FFT and IFFT are
subsequently employed to convert the DSIFs and DTS from the
frequency domain to the time domain. These transient responses,
especially in the immediate aftermath of an impact loading, are of
special interest as most dynamic responses usually reach their
maximum value during this period.

In this work, the SGBEM for elastodynamics in the Fourier-space
frequency domain developed in Refs. [15,16,24] is employed to
evaluate the DSIFs and DTS for free–free beams made of particulate

composite materials. To this end, the effective material properties
ultrasonically measured are utilized. These numerical solutions are
compared with some known experimental results for the purpose of
validation.

2. Fracture analysis using SGBEM

In this section, fracture analysis using the SGBEM for 2-D
elastodynamics in the Fourier-space frequency domain is briefly
presented. More details of the technique can be found in, e.g., [16].

Consider a domain of boundary G containing a crack. Let
G¼Gb[G

þ
c [G

�
c where Gb is the boundary of the non-crack part,

and Gþc and G�c are the ‘‘plus’’ and ‘‘minus’’ surfaces of the crack,
respectively. Further, let Gb ¼Gbu[Gbt where Gbu and Gbt are the
boundary parts where displacement and traction are known,
respectively. Finally, let Gt ¼Gbt[G

þ
c and note that traction is

assumed to be known on the crack surfaces.
For a given angular frequency o and a source point P interior

to a 2-D domain of boundary G, the displacement BIE for
elastodynamics in the frequency domain is given by

UðP,oÞ � ukðP,oÞ�
Z
Gb

UkjðP,Q ,oÞtjðQ ,oÞ�TkjðP,Q ,oÞujðQ ,oÞ
� �

dQ

þ

Z
Gþc

TkjðP,Q ,oÞDujðQ ,oÞdQ ¼ 0 ð1Þ

where Q denotes a field point, Ukj and Tkj are the elastodynamic
kernel tensors (e.g., [28] or [16]), uj and tj are the displacement
and traction vectors, respectively, and Duj is the crack
displacement jump vector.

When P is off the boundary, Ukj and Tkj are not singular and it is
possible to differentiate Eq. (1) with respect to P, resulting in the
displacement gradients. By substituting these gradients into
Hooke’s law and then Cauchy’s relation, one gets the following
traction BIE:

T ðP,oÞ � tkðP,oÞ�nlðPÞ

Z
Gb

DkjlðP,Q ,oÞtjðQ ,oÞ�SkjlðP,Q ,oÞujðQ ,oÞ
� �

dQ

þnþl ðPÞ

Z
Gþc

SkjlðP,Q ,oÞDujðQ ,oÞ ¼ 0 ð2Þ

where nl is the outward normal vector to the boundary and the
elastodynamic kernel tensors Dkjl and Skjl can also be found in [28]
or [16]. This traction equation is required for dealing with crack
geometries.

It is known that the limits of the integrals in Eqs. (1) and (2)
exist as P approaches G. From now on, for a boundary source point
P, the displacement and traction BIEs are understood in this
limiting sense.

Unlike the collocation methods, the Galerkin approaches
enforce Eqs. (1) and (2) over the entire boundary. To obtain a
symmetric coefficient matrix as the name SGBEM implies, Eq. (1)
needs to be enforced over Gbu while Eq. (2) is enforced over Gt.
This is done by using the shape function cm, employed in
approximating the boundary tractions and displacements, as
weighting functions for these equationsZ
Gbu

cmðPÞUðP,oÞdP¼ 0 ð3Þ

Z
Gt

cmðPÞT ðP,oÞdP¼ 0 ð4Þ

The main computational task in numerically implementing
Eqs. (3) and (4) is the evaluation of their singular integrals.
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