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This paper firstly derives the nonsingular general solution of heat conduction in nonlinear functionally

graded materials (FGMs), and then presents boundary knot method (BKM) in conjunction with Kirchhoff

transformation and various variable transformations in the solution of nonlinear FGM problems. The

proposed BKM is mathematically simple, easy-to-program, meshless, high accurate and integration-free,

and avoids the controversial fictitious boundary in the method of fundamental solution (MFS). Numerical

experiments demonstrate the efficiency and accuracy of the present scheme in the solution of heat

conduction in two different types of nonlinear FGMs.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are a new generation of
composite materials whose microstructure varies from one mate-
rial to another with a specific gradient. In particular, ‘‘a smooth
transition region between a pure ceramic and pure metal would
result in a material that combines the desirable high temperature
properties and thermal resistance of a ceramic, with the fracture
toughness of a metal’’ [1]. In virtue of their excellent behaviors,
FGMs have become more and more popular in material engineering
and have featured in a wide range of engineering applications
(e.g., thermal barrier materials [2], optical materials [3], electronic
materials [4] and ever biomaterials [5])

During the past decades extensive studies have been carried out
on developing numerical methods for analyzing the thermal beha-
vior of FGMs, for example, the finite element method (FEM) [6], the
boundary element method (BEM) [7,8], the meshless local boundary
integral equation method (LBIE) [9], the meshless local Petrov–
Galerkin method (MLPG) [10–13] and the method of fundamental
solution (MFS) [14–16]. However, the conventional FEM is inefficient
for handling materials whose physical property varies continuously;
BEM needs to treat the singular or hyper-singular integrals [17,18],
which is mathematically complex and requires additional comput-
ing costs. It is worth noting that, with the exception of mesh-based
FEM and BEM, the other above-mentioned methods are classified to
the meshless method. Among these meshless methods, LBIE and

MLPG belong to the category of weak-formulation, and MFS belongs
to the category of strong-formulation.

This study focuses on strong-formulation meshless methods
due to their inherent merits on easy-to-program and integration-
free. The MFS distributes the boundary knots on fictitious boundary
[19] outside the physical domain to avoid the singularities of
fundamental solutions, and selecting the appropriate fictitious
boundary plays a vital role for the accuracy and reliability of the
MFS solution, however, it is still arbitrary and tricky task, largely
based on experiences.

Later, Chen and Tanaka [20] develops an improved method,
boundary knot method (BKM), which used the nonsingular general
solution instead of the singular fundamental solution and thus
circumvents the controversial artificial boundary in the MFS. This
study first derives the nonsingular general solution of heat con-
duction in FGM, and then applies the BKM in conjunction with the
Kirchhoff transformation to heat transfer problems with nonlinear
thermal conductivity. A brief outline of the paper is as follows:
Section 2 describes the BKM coupled with Kirchhoff transformation
for heat conduction in nonlinear FGM, followed by Section 3 to
present and discuss the numerical efficiency and accuracy of the
proposed approach in two typical examples. Finally some conclu-
sions are summarized in Section 4.

2. Boundary knot method for nonlinear functionally graded
material

Consider a heat conduction problem in an anisotropic hetero-
geneous nonlinear FGM, occupying a 2D arbitrary shaped region
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O�R2 bounded by its boundary G, and in the absence of heat
sources. Its governing differential equation is stated as
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Kij x,Tð Þ

@TðxÞ

@xj

� �
¼ 0, xAO ð1Þ

with the following boundary conditions.
Dirichlet/essential condition:

TðxÞ ¼ T , xAGD ð2aÞ

Neumann/natural condition:

qðxÞ ¼�
X2

i,j ¼ 1

Kij
@TðxÞ

@xj
niðxÞ ¼ q, xAGN ð2bÞ

Robin/convective condition:

qðxÞ ¼ heðTðxÞ�T1Þ, xAGR ð2cÞ

where T is the temperature, G¼GDþGNþGR and K ¼

fKijðx,TÞg1r i, jr2 denotes the thermal conductivity matrix which
satisfies the symmetry (K12 ¼ K21) and positive-definite
(DK ¼ detðKÞ ¼ K11K22�K2

1240) conditions. nif g the outward unit
normal vector at boundary xA@O,he the heat conduction coefficient
and T1 the environmental temperature.

In this study, we assume the heat conductor is an exponentially
functionally graded material such that its thermal conductivity can
be expressed by

Kij x,Tð Þ ¼ a Tð ÞKije
P2

i ¼ 1
2bixi , x¼ x1,x2ð ÞAO ð3Þ

in which a Tð Þ40,K ¼ fKijg1r i,jr2 is a symmetric positive definite
matrix, and the values are all real constants. b1 and b2 denote
constants of material property characteristics.

By employing the Kirchhoff transformation

fðTÞ ¼
Z

aðTÞdT ð4Þ

Eqs. (1) and (2) can be reduced as the following form:
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FT ðxÞ ¼fðTÞ, xAGD ð6aÞ

qðxÞ ¼�
X2

i,j ¼ 1

Kij
@TðxÞ

@xj
niðxÞ ¼�e

P2

i ¼ 1
2bixi

X2

i,j ¼ 1

Kij
@FT ðxÞ

@xj
niðxÞ ¼ q, xAGN

ð6bÞ

qðxÞ ¼ he FT ðxÞ�jðT1Þ
� �

, xAGR ð6cÞ

where FT ðxÞ ¼jðTðxÞÞand the inverse Kirchhoff transformation

TðxÞ ¼j�1 FT ðxÞð Þ ð7Þ

And then we derive the nonsingular general solution of Eq. (5)
by two-step variable transformations:

Step 1: To simplify the expression of Eqs. (5), let FT ¼

Ce�
P2

i ¼ 1
biðxiþ siÞ. Eq. (5) can then be rewritten as follows:
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where l¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP2
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functions of Eq. (8) are equal to those of anisotropic modified
Helmholtz equation.

Step 2: To transform the anisotropic Eq. (8) into isotropic one, we set
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where DK ¼ det K
� �
¼ K11K22�K

2

1240.
It follows from Eq. (8) that
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Therefore, Eq. (10) is the isotropic modified Helmholtz equation,
the corresponding nonsingular solution can be found in [20]. Then
the nonsingular solution of Eq. (8) can be obtained by using inverse
transformation (9),

uGðx,sÞ ¼�
1

2p
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in which R¼
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x,sare collocation points and source points, respectively, and I0

denotes the zero-order modified Bessel function of first kind.
Finally, by implementing the variable transformation

FT ¼Ce�
P2

i ¼ 1
bi xiþ sið Þ, the nonsingular solution of Eq. (5) is in

the following form:
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It is worth noting that the source points are placed on the
physical boundary by using the present nonsingular general
solution uG.

In the boundary knot method, the solution of Eqs. (5) and (6) is
approximated by a linear combination of general solutions with the
unknown expansion coefficients as shown below:

F xð Þ ¼
XN

i ¼ 1

aiuG x,sið Þ ð13Þ

where faig are the unknown coefficients determined by boundary
conditions. AfterFðxÞ is obtained, the temperature solution T to Eqs.
(1) and (2) can be obtained using Eq. (7).

The heat flux can then be given by
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where I1 denotes the first-order modified Bessel function of
first kind.

In view of the general solution satisfying the governing Eq. (5), a
priori, the presented method only needs boundary discretization to
satisfy boundary conditions

Aa¼ b ð16Þ

in which

A¼

uGðxj,siÞ

Q ðxj,siÞ
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0
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