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the sample concentration, thus requiring normalization. A sequential normalization strategy was
developed to remove these detrimental effects, including: (i) pre-acquisition sample normalization by
individual dilution factors to narrow the concentration range and to standardize the analytical condi-
tions, (ii) post-acquisition data normalization by quality control—based robust LOESS signal correction

ﬁg:g;‘f;ﬁcs (QC-RLSC) to correct for potential analytical drift, and (iii) post-acquisition data normalization by MS
LC-MS total useful signal (MSTUS) or probabilistic quotient normalization (PQN) to prevent the impact of
Urine concentration variability. This generic strategy was performed with urine samples from healthy in-
Normalization dividuals and was further implemented in the context of a clinical study to detect alterations in urine
Kidney failure metabolomic profiles due to kidney failure. In the case of kidney failure, the relation between creatinine/

osmolality and the sample concentration is modified, and relying only on these measurements for
normalization could be highly detrimental. The sequential normalization strategy was demonstrated to
significantly improve patient stratification by decreasing the unwanted variability and thus enhancing
data quality.
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1. Introduction

Because metabolomics aims at the comprehensive monitoring
of metabolites (mass < 1000 Da) in biological systems, it constitutes
a potent approach for assessing phenotype modifications caused by
disease or environmental influences at the molecular level. Among
the various biological matrices used in metabolomics, urine is a
biofluid of major interest because of its non-invasive collection and
its availability in large quantities. However, one important issue
remains: the natural variability in the concentration of urine, which
depends mostly on the hydration and physiological status of the
organism. The total concentration of metabolites in urine was re-
ported to vary by more than 14-fold [1]. The comparison of
metabolite levels between different groups of samples constitutes
one of the most classic and widespread application of metab-
olomics to search for biomarkers. Due to the important variability
in the concentration of urine, such an approach can lead to
misleading results and wrong conclusions without the use of
sample or data normalization methods. A literature survey reported
that information related to normalization was lacking in almost half
of the urinary metabolomics studies published between 2012 and
2014 [2]. Furthermore, when a normalization strategy applied was
mentioned, useful details were rarely reported.

Several normalization strategies based on different principles
have been developed for metabolomics and can be classified into
three main categories: (i) pre-acquisition, by specific dilution or
injection volume [3,4]; (ii) post-acquisition, by data treatment [5];
and (iii) pre- and post-acquisition using a combination of methods
[3,6]. The choice of the optimal normalization strategy is often
dependent on the context of the study, and efforts still need to be
made to develop generic normalization strategies for the analysis of
urine. For urine metabolomics, normalization has two distinct
aims: to remove differences due to urine concentration and to
correct for analytical variability. These two aspects are mandatory
to properly compare metabolic profiles.

Strategies were developed to estimate urine concentrations, and
the five most popular are based on different approaches: (i) relative
concentration to one reference compound (creatinine) or a sub-
group of molecules [7,8], (ii) measurement of the total solute con-
centration (osmolality) [6,9], (iii) urine/pure water density ratio
(specific gravity) [4], (iv) 24-h urine volume [5,10], or (v) signal
integration (total ion current) [ 11,12]. Each concentration estimator
was used in pre-acquisition sample or post-acquisition data
normalization. Creatinine excretion is a commonly used clinical
parameter that is directly linked to glomerular filtration in normal
physiological conditions [1,2]. Nevertheless, human urine metab-
olomic studies often target disease or abnormal physiological
conditions; therefore, this estimator can be altered [13,14].
Furthermore, relying on a single compound to evaluate the overall
sample concentration constitutes a risk when its proper measure-
ment cannot be guaranteed [15]. Alternatively, osmolality allows a
more comprehensive evaluation of the sample concentration and is
considered the gold standard in clinical study [16]. Specific gravity
is a potent osmolality estimator but has limited interest when
osmolality is available [16]. Warrack et al. reported better results
when applying normalization based on osmolality rather than
creatinine and 24-h urine volume. Collecting the latter for all vol-
unteers may be problematic in clinical studies. Alternatively to
osmolality, a data treatment called MS total useful signal (MSTUS)
based on a normalization factor calculated from the sum of features
common to all samples can be applied [5]. This treatment limits the
impact of exogenous compounds, such as xenobiotic and orphan
features, that could be detected in a limited number of samples.
Most recently, Filzmoser et al. described the concept of “closure”
induced by total sum normalization (TSN) or MSTUS involving the

distribution of variation over all signals when one component de-
creases or increases, thus creating links between features. These
normalizations require the assumption of closed data, where the
features add to a constant sum. Filzmoser et al. demonstrated the
benefit of using probabilistic quotient normalization (PQN) over
these relatively classic data pre-treatment methods in a simulation
study when data were not initially closed [17].

In addition to the natural variability of urine concentrations,
several studies reported analytical drift in UHPLC-QTOF-MS anal-
ysis [18]. To monitor and overcome this effect, quality control (QC)
samples are injected at regular intervals during the experimental
sequence as relevant landmarks of the analytical process stability to
ensure the quality of data acquisition [19—21]. In most metab-
olomic studies, normalization is used to correct for the analytical
variability during experimental runs by ensuring the repeatability
of the QCs [18]. Dunn et al. reported that every feature fluctuated
differently during the sequence, and global normalization is
therefore sub-optimal. In that context, a quality control—based
robust LOESS signal correction (QC-RLSC) selectively applied to
each detected ion feature was proposed. For each feature in the QC
samples, a specific locally weighted scatterplot smoothing (LOESS)
fitted curve is obtained based on the QC samples to evaluate the
temporal drift with respect to the processing order. This function is
then used to correct for the same feature in each sample [18]. Kir-
wan et al. demonstrated the advantage of using data treatment
based on robust spline correction (QC-RSC) in terms of execution
speed compared to QC-RLSC [22]. Most recently, support vector
regression correction (QC-SVRC) was reported to slightly outper-
form QC-RSC [23].

A final important aspect is the implementation of peak filtering
in the workflow to ensure the relevance of the data. Using non-
relevant features, such as noisy or saturated signals, in the data
normalization step affects data quality and integrity. For this
reason, peak filtering has to be implemented before data normali-
zation. When applied after data normalization, peak filtering is
strongly dependent on the type of normalization used. Naz et al.
proposed to filter data by response to dilution [24]. QC and diluted
QC (dQC) samples must be injected successively at regular intervals
during the experimental sequence to reduce the impact of analyt-
ical drift on the filtering. A relevant feature must have a nearly
linear response to the concentration, and the dQC/QC ratio is ex-
pected to remain constant throughout the sequence [24,25]. Signals
filtered before normalization can lead to better data quality.

This study proposes a thorough investigation of various ap-
proaches for sequential normalization strategies in the context of
urine metabolomic analysis by UHPLC-QTOF-MS based on indi-
vidual dilution factors. This included the investigation of the
creatinine concentration and osmolality and comparison with 'H
NMR measurements as absolute estimates of sample concentra-
tions to calculate the individual dilution factors. In a second step,
three data pre-processing methods, namely QC-RLSC [18], MSTUS
[5] and PQN [17], were investigated and discussed. This sequential
normalization strategy was implemented in the context of a clinical
study of kidney failure, involving patients suffering from physio-
logical alterations that may have an impact on urine concentration
estimators, such as osmolality and creatinine [13,14].

2. Methods
2.1. Preliminary study
2.1.1. Sample collection and preparation
A series of urine samples was collected from 8 healthy volun-

teers (4 women, 4 men) at 3 time points separated by intervals of
one month. The samples were aliquoted and stored at —80 °C. Urine
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