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a b s t r a c t

Functionally graded plates under static and dynamic loads are investigated by the local integral

equation method (LIEM) in this paper. Plate bending problem is described by the Reissner moderate

thick plate theory. The governing equations for the functionally graded material with respect to the

neutral plane are presented in the Laplace transform domain and therefore the in-plane and bending

problems are uncoupled. Both isotropic and orthotropic material properties are considered. The local

integral equation method is developed with the locally supported radial basis function (RBF)

interpolation. As the closed forms of the local boundary integrals are obtained, there are no domain

or boundary integrals to be calculated numerically in this approach. The solutions of the nodal values

for the entire plate are obtained by solving a set of linear algebraic equation system with certain

boundary conditions. Details of numerical procedures are presented and the accuracy and convergence

characteristics of the method are examined. Several examples are presented for the functionally graded

plates under static and dynamic loads and the accuracy for proposed method has been observed

compared with 3D analytical solutions.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The boundary element method (BEM) is an effective numerical
tool for the solution of boundary or initial-boundary value
problems [1]. The first application of the boundary integral
equation method to Reissner’s plate theory was given by Van
der Ween [2]. Dynamic analysis of elastic Reissner plates has been
performed by the direct BEM in the frequency domain [3,4].
Unfortunately, the number of applications to analyse functionally
graded plates by the use of BEM is very limited due to the lack of
availability of fundamental solutions.

Meshfree methods have achieved remarkable progress in
recent years. Typical methods include the method of fundamental
solution [5,6], the diffuse element method [7], the element-free
Galerkin method [8] and the meshless local Petrov–Galerkin
method [9]. These methods have attracted much attention during
the past decade, especially owing to their high adaptivity and low
effort to prepare input data for numerical analyses [10]. The
meshless collocation method, meshless local Petrov–Galerkin
method and local boundary integral equation method (LBIE) with
moving least square and radial basis function interpolations has
been developed by Ferreira et al. [11], Gilhooley et al. [12], Sladek

et al. [13] and Li et al. [14], respectively, for anisotropic
non-homogeneous and composite plates. Recently an improved
meshless collocation method has been proposed for two elastostatic
and elastodynamic problems by Wen and Aliabadi [15] and for
nonlinear analysis by Wen and Hon [16]. A comprehensive review
of meshless methods can be found by Atluri [17] and Liu [18].

The interpolation methods including the radial basis function
method and moving least squares method play an important role
in the meshless investigations. Hardy [19] developed a general
scattered data approximation method, called multi-quadric (MQ),
to approximate two-dimensional geographical surfaces. Numer-
ical results show that the MQ method offers a very accurate
interpolation. In Franke’s review [20] paper, MQ was rated one of
the best methods among 29 scattered data interpolation schemes,
based on accuracy, stability, efficiency, memory requirement and
ease of implementation. Kansa [21] derived a modified MQ
scheme for solving PDE problems. In the last two decades, the
developments of radial basis functions as a truly meshless
method has drawn the attention of many investigators (see
Golberg and Chen [22]).

Functionally graded materials (FGMs) are multi-phase materi-
als with the phase volume fractions varying gradually in space, in
a pre-determined profile. This results in continuously graded
mechanical properties that vary gradually with location within
the material. Generally, the spatial gradients in material beha-
viour render FGMs as superior to conventional composites. FGMs
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differ from composites wherein the volume fraction of the inclu-
sion is uniform throughout the composite. The closest analogous of
FGMs are laminated composites, but the latter possess distinct
interfaces. More details about FGMs can be referred to references
[23,24]. The most familiar FGMs are compositionally graded from a
refractory ceramic to a metal. It can incorporate incompatible
functions such as the heat, wear and corrosion resistances of
ceramics and the high toughness, high strength and bonding
capability of metals without severe internal thermal stresses. In
this paper, the meshless local integral equation method is
presented for the FGMs plate with Reissner’s plate theory. With
the use of radial basis functions, the analytical solutions for all
domain integrals in the weak form are derived. The weak formula-
tions for the governing equations with a unit test function are
obtained exactly for the local domain integrals. As the closed form
of the local domain integrals are obtained, the computational time
is reduced significantly. The Laplace transform technique is applied
for dynamic problems. Numerical results for isotropic and ortho-
tropic plates with various boundary conditions and static and
Heaviside loadings are presented to illustrate the applicability of
the proposed method.

2. Governing equations for FGM plates

Consider a FGMs rectangular plate of uniform thickness h,
length a and width b as shown in Fig. 1. The Cartesian coordinate
system is introduced such that the bottom and top surfaces of
plate is placed in the plane z0 ¼0 and z0 ¼h. Then, the spatial
displacement field has the following form [1,2]:

u¼ u0þðz
0�z0Þw1ðx,y,tÞ

v¼ v0þðz
0�z0Þw2ðx,y,tÞ

w¼w3ðx,y,tÞ ð1Þ

where z0 indicates the position of neutral plane where the
in-plane stresses are zero, u0 and v0 displacements of in-plane,
w1, w2 are rotations around x and y axes, respectively, and w3 is
the out-of-plane deflection. The linear strains are given by

ex ¼ u0,1þðz
0�z0Þw1,1

ey ¼ v0,2þðz
0�z0Þw2,2

gxy ¼ u0,2þv0,1þðz
0�z0Þðw1,2þw2,1Þ

gxz ¼w1þw3,1

gyz ¼w2þw3,2 ð2Þ

For a plane stress problem in orthotropic materials, the Hook’s
law can be written in matrix form as

sx

sy

txy

txz

tyz

2
6666664

3
7777775
¼Dðx,y,zÞ

ex

ey

gxy

gxz

gyz

2
6666664

3
7777775

ð3Þ

where material parameter matrix

Dðx,y,z0Þ ¼

E1=e E1n21=e 0 0 0

E2n12=e E2=e 0 0 0

0 0 G12 0 0

0 0 0 G13 0

0 0 0 0 G23

2
6666664

3
7777775

ð4Þ

in which e¼1�n12n21, E1 and E2 are the Young’s moduli referring
to the axes x and y, respectively. G12, G13 and G23 are shear moduli
and nij are Poisson’s ratios. There are two main assumptions for
the functionally graded materials. The first assumption is that the
material properties are graded along the plate thickness as

Pðx,y,z0Þ ¼ Pbðx,yÞþ½Ptðx,yÞ�Pbðx,yÞ�ðz0=hÞn ð5Þ

and the section assumption is

Pðx,y,z0Þ ¼ Pbðx,yÞexpðz0d=hÞ, d¼ lnðPt=PbÞ ð6Þ

where Pt and Pb denote the properties of the top and bottom faces
of the plate, respectively, and n is a parameter that indictates the
material variation profile. In addition, Possion’s ratios and mass
density of the plate are assumed to be constants. Under pure
bending, we haveZ h

0
sxðx,y,z0Þdz0 ¼ 0 ð7Þ

Therefore, the position of the neutral plane is obtained for the
first assumption of material variation profile:

z0 ¼
ðnþ1Þðnbþ2Þ

2ðnþ2Þðnbþ1Þ
h: ð8Þ

For the second assumption of variation profile, one holds

z0 ¼
1

1�b
þ

1

lnb

� �
h ð9Þ

where b¼Pb(x,y)/Pt(x,y). It should be noticed that the neutral
plane does not exist on the middle plane (z0 ¼h/2) of the plate
except b¼1.

New coordinate system is established on the neutral plane as
shown in Fig. 1, i.e. z¼z0 �z0, and the bending moments Mab and
shear forces Qa are defined as [1]

M11

M22

M12

2
64

3
75¼ Z h�z0

�z0

sx

sy

txy

2
64

3
75zdz,

Q1

Q2

" #
¼ k

Z h�z0

�z0

t13

t23

" #
dz

and

N11

N22

N12

2
64

3
75¼ Z h�z0

�z0

sx

sy

txy

2
64

3
75dz ð10Þ

where k¼5/6 in the Reissner plate theory. Substituting (2) and (3)
into moment and force resultants (10) yields

M11 ¼D11w1,1þD12w2,2

M22 ¼D21w1,1þD22w2,2

M12 ¼ Sðw1,2þw2,1Þ
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Fig. 1. A rectangular plate and coordinate system and sign convention of bending moments and shear forces for the plate on neutral plane.
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