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a b s t r a c t

As a first endeavor, this paper applies an affine space decomposition, proposed by Ling and Hon, to the

static analysis of laminated plates. The radial basis functions collocation method by Kansa is modified

by this affine space decomposition. The present approach can be seen as an improvement of the original

Kansa’s method, producing better conditioned matrices and very stable solutions for the static analysis

of laminated plates. A static analysis of isotropic and laminated plates is performed by considering a

first-order shear deformation plate theory. The equilibrium equations and the boundary conditions are

interpolated by collocation with radial basis functions.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

This paper addresses for the first time the analysis of isotropic
and laminated composite plates by radial basis functions colloca-
tion and an affine space decomposition, by Ling and Hon [1].

Some relevant works on analysis of thick plates include those
of Wang et al. [6], Khdeir and Librescu [7], Bhimaraddi [8],
Kitipornchai et al. [9], Liew et al. [10–12,40], Putcha and Reddy
[13], and Reddy and Phan [14]. An historical review on laminated
plates and shells has been presented by Carrera [15]. The use of
alternative methods to the finite element methods such as
meshless methods is attractive due to the absence of a mesh. A
recent review of meshless methods including the element-free
Galerkin method and reproducing kernel particle method can be
found in [41]. Another mesh-free method, the radial point inter-
polation method, is referenced as being accurate when dealing
with scattered nodes in the domain [42,43].

The focus of this paper is the radial basis functions (RBF)
collocation method, which have been previously studied by
numerous authors for the analysis of structures and materials
[16–27]. More recently the authors have applied RBFs to the static
deformations of composite beams and plates [28–30].

Although much work has been done with analytical or mesh-
less methods, there is no research on static analysis of isotropic
and laminated plates by radial basis functions collocation with an
affine space decomposition.

2. Solution of partial differential equations (PDE) problems
with radial basis functions

The radial basis function ðfÞ approximation of a function ðuÞ is
given by

~uðxÞ ¼
XN

i ¼ 1

aifðJx�yiJ2Þ, xARn
ð1Þ

where yi, i¼ 1, . . . ,N is a finite set of distinct points (centers) in
Rn. The coefficients ai are chosen so that ~u satisfies some
boundary conditions. In this work are considered the following
RBFs:

fðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þE2r2

p
multiquadrics

fðrÞ ¼ ðEþr2Þ
�1 inverse quadrics

where the Euclidian distance r is real and non-negative, and E is a
(positive) shape parameter.

2.1. Solution of the interpolation problem

Hardy [31] introduced multiquadrics in the analysis of scat-
tered geographical data. In the 1990s Kansa [32] used multi-
quadrics for the solution of partial differential equations.

Considering N distinct interpolations points, and given uðxjÞ,
j¼ 1;2, . . . ,N, the vector of the coefficients ai is the solution of a

N�N linear system

Aa ¼ u ð2Þ

where A¼ ½fðJxj�yiJ2Þ�N�N , a ¼ ½a1,a2, . . . ,aN�
T and u¼ ½uðx1Þ,

uðx2Þ, . . . ,uðxNÞ�
T . The RBF interpolation matrix A is positive
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definite for some RBFs [33], but in general provides ill-condi-
tioned systems.

2.2. Solution of the static problem

The solution of a static problem by radial basis functions
considers NI nodes in the domain and NB nodes on the boundary,
with total number of nodes N¼NIþNB.

Denoting the sampling points by xiAO, i¼ 1, . . . ,NI and
xiA@O, i¼NIþ1, . . . ,N. At the points in the domain it is solved
the following system of equations:

XN

i ¼ 1

NaiLfðJxj�yiJ2Þ ¼ fðxjÞ, j¼ 1;2, . . . ,NI ð3Þ

or

LIa ¼ F ð4Þ

The system of equations for the boundary conditions is

XN

i ¼ 1

aiLBfðJxj�yiJ2Þ ¼ gðxjÞ, j¼NIþ1, . . . ,N ð5Þ

or

Ba ¼G ð6Þ

Therefore the finite-dimensional static problem can be written as

LI

B

" #
a ¼

F

G

� �
ð7Þ

where

LI ¼ ½LfðJxj�yiJ2Þ�NI�N , B¼ ½LBfðJxj�yiJ2Þ�NB�N

By inverting the system (7), it is obtained the vector of
coefficients a. Next step is the calculus of the solution by the
interpolation equation (1).

3. Affine approach

For certain values of the shape parameter in the RBF-PDE
problem, the system of equations can be ill-conditioned [1,45,46].
To overcome this problem, an improved solution based on an
affine space decomposition method that decouples the influence
between the interior and boundary collocations was proposed by
Ling and Hon [1]. A short introduction to the procedure is
given below.

Concerning to system (7), if By is the pseudoinverse matrix and
wB is the null matrix of B obtained from the SVD (singular value
decomposition) of B, then the coefficients vector a may be written
as

a ¼ ByGþwBb ð8Þ

where

BwB ¼ 0 ð9Þ

and

BByG¼G ð10Þ

Substituting the coefficient vector a in the part of the resultant
system (7) that corresponds to the operator L leads to a reduced
system with b being the new coefficient vector

½LI wB�b ¼ ½F�LI By G� ð11Þ

Finally the solution a is recovered from Eq. (8). This is an
equivalent formulation of the problem with the benefit of a
generally better conditioned system matrix.

This affine space approach is now generalized and applied to
systems of PDEs. Consider the following boundary value problem
with two PDEs, each one of them decoupled into interior portion
and boundary portion:

L1uðxÞ ¼ f1ðxÞ, xAO
LB1uðxÞ ¼ g1ðxÞ, xA@O
L2uðxÞ ¼ f2ðxÞ, xAO
LB2uðxÞ ¼ g2ðxÞ, xA@O

8>>>><
>>>>:

ð12Þ

The rows of the resultant system of the RBF collocation
method are rearranged so that the boundary conditions appear
together. The rearranged resultant system in matrix form is
given by

LI
1

LI
2

B1

B2

2
66664

3
77775a ¼

F1

F2

G1

G2

2
66664

3
77775 ð13Þ

The coefficient vector a is now decomposed by the orthonor-
mal basis of the null space of

B¼
B1

B2

" #
ð14Þ

Next the pseudoinverse matrix By and the null matrix wB are
obtained from the SVD of B. As a result of the affine decomposi-
tion it follows a reduced system

½LI wB�b ¼ ½F�LI By G� ð15Þ

where

LI
¼
LI

1

LI
2

" #
, F¼

F1

F2

" #
, G¼

G1

G2

" #
ð16Þ

After solving the reduced system using again SVD, its solution
vector b is employed to obtain the vector of coefficients a through
the relation

a ¼ ByGþwBb ð17Þ

4. Equations of equilibrium for the plate in bending

Based on the FSDT (first-order shear deformation theory), the
transverse displacement wðx,yÞ and the rotations yxðx,yÞ and
yyðx,yÞ about the y- and x-axes are independently interpolated
due to uncoupling between inplane displacements and bending
displacements for plates. For static analysis are considered the
following equations of equilibrium, corresponding to the so-called
Mindlin–Reissner theory for plates [2–4]:
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