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HIGHLIGHTS

e A new baseline correction method
based on Bayesian regularized artifi-
cial neural networks (iBRANN) has
been developed.

e The proposed method can handle
different baselines with cave, convex,
curve-linear, triangular and sinusoi-
dal patterns.

e Implementation of iBRANN on 1D
and 2D data revealed the superiority
of this method over iPF, airPLS, MPLS
and CC techniques.
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ABSTRACT

The present work deals with the development of a new baseline correction method based on the
comparative learning capabilities of artificial neural networks. The developed method uses the Bayes
probability theorem for prevention of the occurrence of the over-fitting and finding a generalized baseline.
The developed method has been applied on simulated and real metabolomic gas-chromatography (GC)
and Raman data sets. The results revealed that the proposed method can be used to handle different types
of baselines with cave, convex, curvelinear, triangular and sinusoidal patterns. For further evaluation of the
performances of this method, it has been compared with benchmarking baseline correction methods such
as corner-cutting (CC), morphological weighted penalized least squares (MPLS), adaptive iteratively-
reweighted penalized least squares (airPLS) and iterative polynomial fitting (iPF). In order to compare
the methods, the projected difference resolution (PDR) criterion has been calculated for the data before
and after the baseline correction procedure. The calculated values of PDR after the baseline correction
using iBRANN, airPLS, MPLS, iPF and CC algorithms for the GC metabolomic data were 4.18, 3.64, 3.88,1.88
and 3.08, respectively. The obtained results in this work demonstrated that the developed iterative
Bayesian regularized neural network (iBRANN) method in this work thoroughly detects the baselines and
is superior over the CC, MPLS, airPLS and iPF techniques. A graphical user interface has been developed for
the suggested algorithm and can be used for easy implementation of the iBRANN algorithm for the
correction of different chromatography, NMR and Raman data sets.
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1. Introduction

The baseline correction is an active research area in the data
processing community and has received great deal of attention in
recent years for cleaning the raw data acquired from simple and
complicated analytical instruments [1—10]. The problem of baseline
drift routinely occurs in common quantification and characteriza-
tion techniques such as NMR, IR, Raman, ion mobility spectroscopy
(IMS), cyclic voltammetry (CV), mass spectrometry (MS), gas
chromatography (GC) and liquid chromatography (LC) [10—14]. In
NMR spectroscopy, the background artifacts occur mainly due to
corruption of the first few points in free induction decay [10,11]. In
chromatography, the baseline usually comes from column sta-
tionary phase bleed, low frequency detectors, and instrumental
instabilities [15]. In most spectroscopic techniques, the background
signal occurs because of stray light and non-uniform particle/
droplet size and distribution. In recent years, promising hyphen-
ated analytical techniques such as GC x GC [16], GC-IR, LC x LC-MS
and GC x GC-MS have been developed and used to solve compli-
cated separation and identification problems in chemistry. In many
hyphenated techniques, the baseline drift has also been found as a
basic problem, which confines the detection limits and sensitivities
for determination of the analytes.

The simplest method to remove baseline drift is fitting a
straight line using the first and last points of the collected data.
The fitted line is then subtracted from the whole data points to
produce baseline free signals. This method works under a simple
assumption according to which the baseline pattern only changes
linearly over all of the channels of the detector. If this simple
assumption fails, which usually does, the algorithm returns many
negative data points and omits important signals from the raw
data. The iterative polynomial fitting (iPF) [17] strategies have
been proposed to tackle this problem. In such methods, a poly-
nomial line is fitted on the collected data while the fitted curve is
constrained to be noise-free and smooth. Some new strategies
have been applied for reducing the weights of the peak segments
when estimating the curved background. These methods are
based on an assumption which the maximum and near maximum
points in an analytical signal are less affected by the baseline drift
and should have less weights for deriving the background. This
assumption works well for identifying and removing curved and
non-uniform baselines in many cases. Some methods based on
asymmetric least squares (AsLS) [18,19], exponential smoothing
[20] and quintile regression [21] have been proposed for the
automatic selection of the weights of the data points. The main
strategy for these algorithms is, more or less, the same and is
based on the iterative adaptation of the fitted baseline. Generally,
the methods change weights iteratively by estimating a baseline.
No weight or small weight is given when a signal is above a fitted
baseline. In this respect, as the signal goes below a fitted baseline,
it gets much more weights and the baseline is re-estimated, iter-
atively. As a result, the final baseline is underestimated in the no
peak region and the height of the peak might be overestimated by
the effect. Recently, the asymmetrically reweighted penalized least
square (arPLS) [22] has been proposed to solve this problem. In
this method, a logistic function is used to handle the weight
problem and finally the peak segments in a signal also receive
some weights for estimating the baseline drift. Similar to airPLS
[23] and AsLS techniques, the arPLS method requires some pa-
rameters to be optimized before implementation on data. The
parameters of logistic function and the smoothness parameter
(usually named as ) should be tuned and their thorough values
are case dependent. If A is too large, the algorithm would not catch
the curved baseline. On the other hand, a fitted baseline would not
follow peaks if A is too small

Recently, a new method named morphological weighted
penalized least squares (MPLS) has been proposed to handle
different types of baselines. The most important step in MPLS is
background fitting via morphological opening operation [24]. But it
will introduce flaws in the peak region that will change the shape.
In order to compensate the shortcomings of the opening operation
[24], the rough background fitted by the morphological opening
operation and the local minimum value are used as weight vectors
of penalized least squares, respectively, for background refinement.
Another iterative baseline correction method based on the corner
cutting (CC) strategy and Bezier smoothing has been proposed by
Liu et al. [25]. In this method, the corner points will be omitted from
data in an iterative manner and a smooth baseline will be fitted on
remaining points using the Bezier method [26]. The methods of
arPLS, airPLS, AsLS and MPLS need to define the A parameter before
implementation on the data. The number of corner-cutting steps in
CC baseline correction method should also be optimized for thor-
ough detection of the background [25].

In this paper we implemented the Bayesian regularized artificial
neural networks (BRANN) [27] for automatic estimation of the
curved and smoothed baselines in analytical chemistry for the first
time. The proposed algorithm does not require adjusting and
optimizing parameters before data analysis. The results of this
method have been compared with those of airPLS, MPLS and CC
techniques. The proposed method has been tested to estimate the
baseline drift for Raman and GC data. A graphical user interface
(GUI) has been developed for the proposed algorithm and is
available in the supporting material section.

2. Material and methods
2.1. Baseline estimation using penalized least squares

Suppose x is the vector of analytical signal and z is a fitted
baseline vector. The lengths of both vectors are m. The appropri-

ateness of the fitted baseline can be expressed as the sum of squares
of the differences between x and z:

A=§:(Xi*2i)2 (1)
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The roughness of the fitted baseline can be expressed as its
squared and summed differences:
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The balance of the appropriateness and smoothness can be
measured by the following equation:

Q — A+ IR = ||x —z|| + A|Dy|? 3)

Adjusting the A parameter brings a compromise between the
fitting adequacy of the calculated curve and its degree of smooth-
ness. In order to correct the baseline using the penalized least
square algorithm, Cobas [28] and Zhang [29] introduced a weight
vector of appropriateness, and set zero to the weight vector at a
position corresponding to peak segments of X. Here the appropri-
ateness of z to x is modified to:

A=S Wil 2)? = (x— 2/ W(x - 2) (4)
i=1

where, W is a diagonal matrix with wi on its diagonal. If peak region
are known beforehand, w; can be set to zero in those regions and
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