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h i g h l i g h t s g r a p h i c a l a b s t r a c t

� A new wavelength interval combi-
nation optimization algorithm was
proposed based on model popular
analysis strategy.

� The combination of spectral intervals
can be optimized in a soft shrinkage
manner.

� Its computational intensity is eco-
nomic benefit from fewer tune pa-
rameters and faster convergence
speed.

� WBS was proved to be a more effi-
cient sampling method than WBMS
especially for implementing MPA
strategy.
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a b s t r a c t

In this study, a new wavelength interval selection algorithm named as interval combination optimization
(ICO) was proposed under the framework of model population analysis (MPA). In this method, the full
spectra are divided into a fixed number of equal-width intervals firstly. Then the optimal interval
combination is searched iteratively under the guide of MPA in a soft shrinkage manner, among which
weighted bootstrap sampling (WBS) is employed as random sampling method. Finally, local search is
conducted to optimize the widths of selected intervals. Three NIR datasets were used to validate the
performance of ICO algorithm. Results show that ICO can select fewer wavelengths with better prediction
performance when compared with other four wavelength selection methods, including VISSA, VISSA-
iPLS, iVISSA and GA-iPLS. In addition, the computational intensity of ICO is also economical, benefit
from fewer tune parameters and faster convergence speed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Spectroscopic datasets collected by high throughput in-
struments are usually faced with the non-deterministic polynomial
time (NP)-hard problem. This kind of datasets usually consists of

large number of variables and relatively few samples due to the
constraint of actual experimental conditions and costs. Multivariate
calibration techniques such as principal component regression
(PCR) and partial least squares regression (PLS) are usually
employed to address this problem by extracting latent information
from spectroscopic dataset. However, more and more researches
have proved that variable selection is still beneficial for these
multivariate calibration techniques from both experimental and
theoretical aspects [1e5]. The benefits of variable selection can be
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summarized in four main aspects: (1) the prediction ability of
calibration model can usually be improved by eliminating unin-
formative or interfering variables; (2) new calibration model based
on informative variables will be easier to interpret; (3) the
computational speed of new model will be boosted; (4) low cost of
dedicated online or inline analytical instrument with less spectral
channels may be produced under the guide of variable selection [6].

In essence, variable selection is aimed to find an optimal com-
bination of variables for the best prediction performance. However,
as the number of variable combinations grows exponentially along
with the increase of variables, the rough search is always imprac-
tical. Thus, a large number of variable selection methods have been
proposed based on different strategies in the past decades, such as
stepwise strategy, e.g. forward selection and backward elimination
[7]; variable ranking strategy based on parameters of PLS model
[8e10], e.g. loading weights [11,12], regression coefficients [13,14],
variable in projection (VIP) [15], stability [16e19], and selective
ratio [20]; optimization strategy based on artificial intelligent al-
gorithms, e.g. genetic algorithm (GA) [21], simulated annealing (SA)
[22,23], particle swarm optimization (PSO) [24] and ant colony
optimization (ACO) [25]; projection strategy, e.g. successive pro-
jection algorithm (SPA) [26]. Besides, it is worth noting that model
population analysis (MPA) strategy proposed by Liang's group can
also be used for variable selection [27]. Based on this strategy, a
series of variable selection methods has been proposed in recent
years, such as iteratively retaining informative variables (IRIV) [28],
variable combination population analysis (VCPA) [29], variable
iterative space shrinkage approach (VISSA) [30,31], bootstrapping
soft shrinkage (BOSS) [32].

As a general framework for designing new chemometrics or
bioinformatics algorithms, MPA emphasizes that information
should be extracted by analyzing a number of sub-models statis-
tically, because the results or parameters of one single model are
not always reliable. In detail, MPA usually contains three stages: (1)
sub-datasets generation procedure, where random sampling
method is applied to obtain a series of sub-datasets fromvariable or
sample space, such as jackknife sampling [33], bootstrap sampling
(BSS) [34], binary matrix sampling (BMS) [35]; (2) modeling pro-
cedure, where a series of sub-models are established based on sub-
datasets generated in the previous step; (3) statistical analysis
procedure, where interested outputs (e.g., RMSECV value) of all
these sub-models are analyzed statistically.

Advantages of using MPA strategy to variable selection can be
concluded in two aspects: (1) MPA extracts information from a
large number of sub-models, which is beneficial for avoiding the
uncertainty of one single model. (2) Synergistic or combination
effects between different variables are more possible to be retained
by MPA since random variable combinations are generated during
the optimization process. Additionally, the strategy of soft
shrinkage, which can avoid removing important variables by
mistake, can also be regarded as an advantage of some new
methods (e.g. VISSA and BOSS) developed from MPA. By this
strategy, insignificant variables are not eliminated directly, but are
assigned with a smaller sampling weight, ensuring that the process
of optimization is implemented in the soft shrinkage way. Besides,
weighted binary matrix sampling (WBMS) [30] and weighted
bootstrap sampling (WBS) [36] are also two commonly used
weighted random sampling methods. Up to now, there is no com-
parison of their performance yet.

Certainly, variable selection methods based on MPA have some
drawbacks. First, their computational burden is much heavier than
other methods, because they not only need to establish a large
number of sub-models in each loop, but also require many loops to
realize iteration convergence. Secondly, overfitting of these
methods is at high risk due to the large number of variables

combination [3]. Specially, WBMS generates sub-datasets too
strictly depending on the sampling weights, even if the sampling
weight of one variable becomes 1 by chance, it still has to be
included in the future iterations.

Undoubtedly, for most kinds of spectral data, especially for near
infrared spectroscopy, the selection of wavelength intervals seems
more reasonable than single spectral points [3]. Because the
informative variables within specific absorbing bands certainly
contain similar information, which may lead some individual var-
iable selections to chaos runs [37]. In contrast, interval selection
methods can provide a more stable result. Chemical meaning can
also be explained much easier. Furthermore, the selection of in-
tervals can decrease the computational burden by reducing the
number of possible combinations. It was more likely to avoid
selecting single wavelengths in the noisy area which may have
spurious correlations with the interested property [3]. Hence, there
are a lot of spectral interval selection methods reported, such as
interval partial least squares (iPLS) [38], moving windows PLS
(MWPLS) [39] and many variants based on them [40e43]. Besides,
some strategies commonly used for individual variable selection
such as SPA [44], GA [45,46], ACO [47], etc. have also been modified
for selecting informative intervals in recent years. However, MPA
strategy and soft shrinkage strategy have rarely been applied to
spectral interval selection.

New wavelength interval selection named as interval combi-
nation optimization (ICO) is proposed by coupling WBS with MPA,
which can address drawbacks mentioned above together. In this
study, three NIR datasets were applied to validate the performance
of ICO. For comparison, four wavelength selection methods,
including VISSA, interval VISSA (iVISSA), VISSA-iPLS and GA-iPLS,
were also performed as references.

2. Theory and algorithm

2.1. Weighted binary matrix sampling (WBMS)

WBMS provides a random sampling strategy using a binary
matrix [30]. In this K � P size binary matrix, K is the total sampling
number and P is the number of objects. In each column of the bi-
narymatrix, “1” represents the object will be retained formodeling,
while “0” represents the object will be excluded, and the ratio of “1”
in each column will be updated according to the weight in each
iteration. After the ranking order of each column is permutated, a
new binarymatrix is generated. In this new binarymatrix, each row
represents one random sampling procedure. Obviously, the greater
the weight is, the greater the selected probability. And if the weight
of one object is 1, it will be selected in every random sampling
procedure, which means that it will have no possibility to be
excluded. If the weight of one object is 0, it has no possibility to be
retained by any random sampling procedure, which means that it
will be eliminated.

2.2. Weighted bootstrap sampling (WBS)

WBS is a random sampling technique with replacement derived
from BSS [36]. In WBS, one weight is allocated to one object firstly,
which is between 0 and 1. ThenWBS selects objects with a strategy
like the roulette wheel. In this strategy, each object is corre-
sponding to one slot on the roulette, and the size of which is pro-
portional to the weight of the corresponding object. One object is
selected in each run of this roulette. The theoretical selected
probability of one object in each run can be calculated according to
Equation (1). Therefore, even if theweight of one object reaches 1, it
still has a chance to be excluded.
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