EI SEVIER

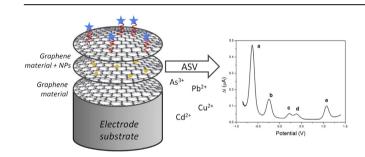
Contents lists available at ScienceDirect

Analytica Chimica Acta

journal homepage: www.elsevier.com/locate/aca

Review

Graphene-based materials for the electrochemical determination of hazardous ions


J. Molina a, F. Cases a, L.M. Moretto b, *

a Departamento de Ingeniería Textil y Papelera, EPS de Alcoy, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell s/n, 03801 Alcoy, Spain

HIGHLIGHTS

- This paper reviews the use of graphene for the electroanalysis of hazardous ions.
- The use of graphene for As(III), Cd²⁺, Pb²⁺, Hg²⁺, Cr(VI), etc. analysis is reported.
- Graphene is interesting for sensors due to: their conductivity and high surface area.
- Graphene can be easily functionalized with nanoparticles or other chemicals
- Selectivity of the electrodes can be improved with the use of organic materials.

G R A P H I C A L A B S T R A C T

ARTICLE INFO

Article history:
Received 20 July 2016
Received in revised form
11 October 2016
Accepted 15 October 2016
Available online 19 October 2016

Keywords:
Graphene
Nanoparticles
Hazardous ions
Sensor
Electrochemical sensor
Electroanalysis

ABSTRACT

The use of graphene in the field of electrochemical sensors is increasing due to two main properties that make graphene and derivatives appealing for this purpose: their conductivity and high surface area. In addition, graphene materials can be easily functionalized with nanoparticles (Au, Pt, etc.) or organic molecules (DNA, polymers, etc.) producing synergies that allow higher sensitivity, lower limit of detection as well as increased selectivity. The present review focuses on the most important works published related to graphene-based electrochemical sensors for the determination of hazardous ions (such as As(III), Cd²⁺, Pb²⁺, Hg²⁺, Cr(VI), Cu²⁺, Ag⁺, etc.). The review presents examples of the use of graphene-based electrodes for this purpose as well as important parameters of the sensors such as: limit of detection, linear range, sensitivity, main interferences, stability, and reproducibility. The application of these graphene-based electrodes in real samples (water or food matrices) is indicated, as well. There is room for improvement of these type of sensors and more effort should be devoted to the use of doped graphene (doped for instance with N, B, S, Se, etc.) since electrochemically active sites originated by doping facilitate charge transfer, adsorption and activation of analytes, and fixation of functional moieties/molecules. This will allow the sensitivity and the selectivity of the electrodes to be increased when combined with other materials (nanoparticles/organic molecules).

 $\ensuremath{\text{@}}$ 2016 Elsevier B.V. All rights reserved.

^b Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, Venice, Italy

^{*} Corresponding author.

E-mail addresses: jamopue@doctor.upv.es (J. Molina), fjcases@txp.upv.es (F. Cases), moretto@unive.it (L.M. Moretto).

Abbreviations		MWCNT	s Multiwalled carbon nanotubes
		nanoG	Nanographene
ABS	Acetate buffer solution	NP	Nanoparticle
AdDPCS	VAdsorptive differential pulse cathodic stripping	NPC	Nanoporous carbon
	voltammetry	ocp	Open circuit potential
ARGO	Activated reduced graphene oxide	OSWV	Osteryoung square wave voltammetry
ASLSV	Anodic stripping linear sweep voltammetry	PAH	polyallylamine hydrochloride
ASV	Anodic stripping voltammetry	Pani	Polyaniline
BF	bismuth film	PBS	Phosphate buffer solution
BFE	Bismuth film electrode	PEDOT	Poly(3,4-ethylenedioxythiophene)
C	Concentration	PEI	Polyethyleneimine
CC	Chronocoulometry	PGE	Pencil graphite electrode
CPE	Carbon paste electrode	poly-p-A	ABSA poly(p-aminobenzene sulfonic acid)
CTAB	Cetyltrimethylammonium bromide	po-G	Partially oxidized graphene
CV	Cyclic voltammetry	PPAA	Plasma polymerized allylamine
CVD	Chemical vapor deposition	PPy	Polypyrrole
DNA	Deoxyribonucleic acid	PS	Polystyrene
DPASV	Differential pulse anodic stripping voltammetry	PSA	Potentiometric stripping analysis
DPV	Differential pulse voltammetry	PSS	poly(styrenesulfonate)
DTT	Diaminoterthiophene	PVDF	polyvinylidene difluoride
EDTA	ethylenediaminetetraacetate	PVP	polyvinylpyrrolidone
EIS	Electrochemical impedance spectroscopy	QCM	Quartz crystal microbalance
ERGO	Electrochemically reduced graphene oxide	QD	Quantum dot
G	Graphene	RGO	Reduced graphene oxide
GCE	Glassy carbon electrode	RSD	Relative standard deviation
GNS	Graphene nanosheets	SA	Sodium alginate
GO	Graphene oxide	SDS	Sodium dodecyl sulfate
GQD	Graphene quantum dot	ssDNA	Single stranded DNA
GRC	Graphite reinforced carbon	SPCE	Screen printed carbon electrode
GS	Graphene sheet	SPE	Screen printed electrode
HER	Hydrogen evolution reaction	STP	Sulfonate-terminated polymer
IL	Ionic liquid	SWASV	Square-wave anodic stripping voltammetry
ITO	Indium tin oxide	SWV	Square wave voltammetry
LSV	Linear sweep voltammetry	WHO	World Health Organization
MFE	Mercury film electrode	3DAGNs	Three-dimensional activated graphene networks
MTU	5-methyl-2-thiouracil		

Contents

oduction			
ermination of different ions	. 13		
Arsenic	. 13		
Cadmium	. 19		
Mercury	. 29		
Other metal ions	. 35		
2.5.1. Chromium	. 35		
2.5.2. Copper	. 35		
2.5.4. Zinc	. 36		
clusions and perspectives	. 37		
Role of the funding source			
Acknowledgements			
	rmination of different ions Arsenic Cadmium Mercury Lead Other metal ions 2.5.1. Chromium 2.5.2. Copper 2.5.3. Silver		

1. Introduction

emerged as a revolutionary material since its isolation in 2004 by K.S. Novoselov and co-workers [2]. Such consideration arises from properties such as high electron mobility at room temperature

Download English Version:

https://daneshyari.com/en/article/5131330

Download Persian Version:

https://daneshyari.com/article/5131330

<u>Daneshyari.com</u>