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a b s t r a c t

Accurate and efficient computation of the distance function d for a given domain is important for many

areas of numerical modeling. Partial differential (e.g. Hamilton–Jacobi type) equation based distance

function algorithms have desirable computational efficiency and accuracy. In this study, as an

alternative, a Poisson equation based level set (distance function) is considered and solved using the

meshless boundary element method (BEM). The application of this for shape topology analysis, including

the medial axis for domain decomposition, geometric de-featuring and other aspects of numerical

modeling is assessed.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Distance level set, d, is a key parameter in many (numerical)
simulation approaches [1], in peripheral applications incorporat-
ing additional solution physics [2] and also in mesh generation [3].
It has proved important in computer vision, solid modeling and
other computational science. Especially, distance function can be
helpful in constructing the medial axis transform (MAT) for a given
geometry [4]. The latter is regarded as a key step in shape analysis
and solid modeling [5,6].

In this paper, as a further study to [4], we propose a hybrid
MAT approach based on the Poisson distance function, namely
dP-MAT. The advantage of such a hybrid method being to extract a
well approximated medial axis point cloud on a properly calcu-
lated distance field has been discussed in detail in Refs. [4,7].
A simple Laplacian or Hessian determinant criterion of the distance
field can be applied to mark the medial axis, and optionally
combined with the a-shape thinning/representation techniques
to thin the marked area to mathematically thin curves. Results
show that the Poisson distance is very competitive in predicting
wall proximity and at the same time efficient.

Another application of dP is for geometric de-featuring. In
computer aided design (CAD), the model of a part is often used for
analysis. These aesthetically pleasing models contain much man-
ufacturing information that is superfluous to analysis require-
ments. It would be highly advantageous to easily alter the CAD
model to suit analysis purposes. De-featuring, or feature suppres-
sion, involves removing small, detailed information from the CAD
model. These small features increase the density of the mesh, thus

increasing the complexity of both the mesh generation and
simulation, without adding significant information to the solu-
tion. Also, it is an extremely time-consuming and difficult process
to remove features by hand. There are a number of methods so far
seen in the literature [8–10]. The crucial part here is the auto-
mation. The possibility of using distances for automatic geome-
trically shape feature removing is explored here with the Poisson
distance function.

In this study, the focus is on the solution of a Poisson distance
function equation within the framework of the meshless bound-
ary element methods. First, we will discuss the Poisson equation
of an auxiliary scalar r2c¼ r, where c is linked to the distance
function d by a quadratic equation. The attraction of applying
BEM here is driven by efficiency. Without meshing and integrat-
ing in the interior elements, the computation can usually be
reduced by one dimension. That is to say, if the original distance
problem is fully 3D, with BEM we only need to solve a 2D
problem. It is also advantageous in moving boundary problems,
where other discretization methods would require the entire
interior domain to be re-meshed.

However, as noted by Ramsak and Skerget in their recent work
[11], there are not many efficient BEM formulations for a generic
Poisson equation in the literature. For example, Suciu et al. [12]
used the Galerkin vector approach but limited the source function
r to satisfy r2r¼ const rather than zero, i.e. harmonic. Fortu-
nately, as will be shown later, in the present study the auxiliary
Poisson equation of c in the distance function context can be
actually reduced to a Laplacian equation due to the fact that the
inhomogeneous term r can be chosen as a constant without
affecting the distance solution.

This paper is organized as follows. The Poisson equation of c is
introduced in the next section followed by the numerical solu-
tions and test cases. The dP-MAT approach for medial axes are
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discussed in Section 4. Finally, the application of distance func-
tions for geometric de-featuring is discussed.

2. Derivation of Poisson distance function

In contrast to the eikonal exact distance governing equation,
other differential (and indeed integral) equations describing the
‘distance’ function are also possible. Several of these methods
were specifically sought to find the wall proximity for turbulence
modeling [13]. One of these approaches goes back to the work of
Spalding [14], in which the Poisson equation of an auxiliary
variable c is solved.

Consider the ultimately simple case, 1D distance from the
center point, and suppose there is a scalar function cðxÞ, such that

d2c
dx2
¼�1 and cð0Þ ¼ 0 ð1Þ

After integration twice, it becomes

dc
dx
þx�C0 ¼ 0 and cþ

x2

2
�C0xþC1 ¼ 0 ð2Þ

Combining the above and the boundary condition in (1), we can
arrive at the quadratic equation of x:

1

2
x2þ

dc
dx

x�c¼ 0 ð3Þ

and the solution x, i.e. the distance function d, can be expressed as

d¼ x¼�
dc
dx
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where the positive solution is meaningful. It then can be extended
to multi-dimension with dc=dx replaced by @c=@n where n is the
outward unit normal, and the governing equation for cðxÞ
becomes

r
2c¼ r, xAO

c¼ 0, xA@O

(
ð5Þ

where the source function r¼�1, and the distance can be
approximated as

d� n¼�
@c
@n
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Although Eqs. (1) and (4) are exact, the extension (6) to multi-
dimension is not. However, for most numerical modeling pro-
blems considered here, only the near wall accuracy matters.
Another advantage of Eqs. (5) and (6) is that they overestimate
d around sharp convex surfaces and underestimate it around
concave. This in exactness has consistent traits with the solid
angle based integral equation for distance function equation
proposed by Launder et al. [13] and Spalart [15] intended for
improving the modeling of turbulence model physics and poten-
tially other aspects of numerical modeling.

3. Numerical solution methods

3.1. Fast multipole BEM solution

The solution of the Poisson equation of the domain integral has
been formulated using the Galerkin vector approach. It requires
the knowledge of a fundamental solution and is valid only for
harmonic source terms [12]. Fundamental solutions are known
for some, but not all, differential equations. Other methods such
as the dual reciprocity method (DRM) [16] and the multiple

reciprocity method (MRM) [17] may be used for more complex
problems. However, for the current special case, where r¼ const,
the Poisson equation (5) can be reduced to a Laplacian equation
and solved using the efficient fast multipole method (FMM) by
Liu and Nishimura [18].

Let f be a new function, such that

f¼cþ f ðx,yÞ ð7Þ

Thus Eq. (5) becomes

r
2f¼ 0, ðx,yÞAO

f¼ f ðx,yÞ, ðx,yÞA@O

(
ð8Þ

Fig. 1. The 2D d contours for three domains. Upper: Poisson. Lower: exact.

H. Xia et al. / Engineering Analysis with Boundary Elements 36 (2012) 907–912908



Download	English	Version:

https://daneshyari.com/en/article/513143

Download	Persian	Version:

https://daneshyari.com/article/513143

Daneshyari.com

https://daneshyari.com/en/article/513143
https://daneshyari.com/article/513143
https://daneshyari.com/

