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a b s t r a c t

The extended displacement discontinuity method (EDDM) and the charge simulation method (CSM) are

combined to develop an efficient approach for analysis of cracks in two-dimensional piezoelectric

media. In the proposed hybrid EDD–CSM, the solution for an electrically impermeable crack is

approximately expressed by a linear combination of fundamental solutions of the governing equations,

which includes the extended point force fundamental solutions with the sources placed at chosen

points outside the domain of the problem under consideration and the extended Crouch fundamental

solutions with the extended displacement discontinuities placed on the crack. The coefficients of the

fundamental solutions are determined by letting the approximated solution satisfy the conditions on

the boundary of the domain and on the crack face. Furthermore, the hybrid EDD–CSM is applied to solve

the problems of cracks under electrically permeable condition, as well as under semi-permeable

conditions by using an iterative approach. Two important crack problems in fracture mechanics, the

center cracks and the edge cracks in piezoelectric strips, are analyzed by the proposed method.

The stress intensity factor and the electric displacement intensity factor are calculated. Meanwhile the

effects of strip size and the electric boundary conditions on these intensity factors are studied.

& 2008 Published by Elsevier Ltd.

1. Introduction

Because of the coupling effect between mechanical and electric
properties, more and more applications are being found on the
piezoelectric ceramics for smart structures and systems. Due to
their brittleness, the research on fracture of piezoelectric
materials has been attracting many attentions. The Stroh
formalism, the potential function method, and the boundary
integral equation method have been used for analysis of cracks in
piezoelectric media. Reviews of this research topic can be found in
Refs. [1–4]. As we know, it is difficult to obtain an analytical
solution of a generally practical problem with a finite domain.
Numerical method, such as the finite element method (FEM) or
the boundary element method (BEM), is an alternatively effective
way, which has been studied intensively and extensively (e.g.,
Refs. [5,6]). BEM is one of the most efficient methods to the
problems of stress concentrations and singularities. Several
techniques have been developed to overcome the ill-conditioned
problem in fracture mechanics of piezoelectric material: the
special Green’s function method [6], the dual BEM [7], and the
extended displacement discontinuity method (EDDM) [8,9]. This

issue has been well documented in BEM of conventional elastic
media [10,11].

The electric field in the cavity of a crack makes the fracture
problem of piezoelectric materials even more complicated. Two
kinds of electric boundary conditions, known as the electrically
impermeable crack and electrically permeable crack, are widely
used on crack faces. In fact, they are only two extreme cases of a
real crack. The appropriateness of these approximate electric
boundary conditions was clarified in Refs. [2,12]. Indeed the crack
opens under applied mechanical–electric loadings, while the
electric field in the crack cavity greatly depends on the crack
opening and the permeability of the material in the crack cavity.
In this regard, the crack opening model [13] that considers the
electric field in the crack cavity and is sometimes called the semi-
permeable crack [2] is thought to be most appropriate to the facts.
It is a typical geometrically nonlinear problem. The EDDM grasps
the basic characteristic of a crack across which the extended
displacement is discontinuous, therefore, above-mentioned each
kind of electric boundary conditions can be easily incorporated in
the EDDM and the implementation is very natural. It has been
proven that the EDDM is much more effective in crack analysis of
piezoelectric media [14–17].

On the other hand, the charge simulation method (CSM) is also
a boundary method similar to the method of fundamental
solution (MFS) [18] and the virtual boundary element method
(VBEM) [19]. In the CSM, the solution is approximated by a linear
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combination of fundamental solutions of the governing equations
in terms of the sources placed at chosen fixed points outside the
domain of the problem under consideration. The coefficients of
the fundamental solutions are determined by letting the approxi-
mated solution satisfy the boundary conditions at corresponding
points on the boundary of the domain of the problem. The CSM
shares all the advantages of the BEM over domain discretization
methods. Furthermore, it does not require discretization of the
boundary, and, thus, avoiding integrations over the boundary. No
quadrature is required to evaluate the solution field in the interior
of the domain. The data preparation is little. This method has been
successfully applied to solutions of plane elastic problems
[20–22], deflection and vibration of plates [23–25], axisymmetric
problems in elastostatics [26], and three-dimensional (3D)
problems in elastostatics [27].

In this paper, the above two efficient methods, i.e., the EDDM
and the CSM, are combined to develop an approach of higher
computing speed and efficiency in crack analysis in two-dimen-
sional (2D) finite piezoelectric media. Following this Introduction,
the basic equations are outlined in Section 2; the hybrid Extended
Displacement Discontinuity (EDD)–CSM is presented in Section 3;
the proposed hybrid EDD–CSM is employed in Section 4 to
analyze the center crack and the edge crack in piezoelectric strips;
and finally, the present paper is concluded in Section 5.

2. Basic equation

Consider a plane problem of a transversely isotropic piezo-
electric medium, which occupies a finite domain O bounded by G,
as shown in Fig. 1. The Cartesian coordinate system oxz is set up
such that the polarization direction of the piezoelectric medium is
along the z-axis. There is a line crack S parallel to the x-axis in the
piezoelectric medium, with the upper and lower crack faces being
denoted by S+ and S�, respectively.

The extended equilibrium equations, in the absence of body
force and free electric charge, are given by [1–3]

qsx

qx
þ
qtxz

qz
¼ 0;

qtxz

qx
þ
qsz

qz
¼ 0;

qDx

qx
þ
qDz

qz
¼ 0, (1)

where sx, sz and txz denote the stress components; Dx and Dz are
the electric displacements in the x- and z-direction, respectively.

The extended strain–displacement relations are expressed as

�x ¼
qu

qx
; �z ¼

qw

qz
; gxz ¼

qu

qz
þ
qw

qx
; Ex ¼ �

qf
qx
; Ez ¼ �

qf
qz

,

(2)

where ex, ez and gxz are the strain components; Ex and Ez are
electric fields in the x- and z-directions, respectively; u and w are
elastic displacement components, and f the electric potential.

The constitutive equations read as

sx ¼ c11�x þ c13�z � e31Ez,

sz ¼ c13�x þ c33�z � e33Ez,

txz ¼ c44gxz � e15Ex,

Dx ¼ e15gxz þ �11Ex,

Dz ¼ e31�x þ e33�z þ �33Ez, (3)

where c11, c13, c33 and c44 denote the elastic constants, e31, e33 and
e15 the piezoelectric constants, and e11 and e33 the dielectric
permittivities.

There are two categories of boundary conditions on
boundary G. One is the mechanical condition and the other is
the electric condition. The mechanical condition can be divided
into the prescribed displacement boundary condition

u ¼ ū; w ¼ w̄; on Gu, (4a)

where the over bar ‘‘–’’ denotes the prescribed values on the
boundary, and the prescribed traction boundary condition

tx � sxnx þ txznz ¼ t̄x; tz � txznx þ sznz ¼ t̄z; on Gt , (4b)

where {ni} is the unit vector normal to boundary G and outward
from the domain.

Similarly, the electric boundary condition can be divided into
the prescribed potential boundary condition

f ¼ f̄; on Gf, (5a)

and the prescribed electric displacement boundary condition

o � Dxnx þ Dznz ¼ ō; on Go. (5b)

The mechanical boundary condition on crack face S has the
same form as that given in Eq. (4). And the electric boundary
condition takes one of the following three kinds of electric
boundary conditions on crack faces [2], i.e.,

Dþz ¼ D�z ¼ �ō, (6a)

for electrically impermeable condition, where the superscripts ‘‘+’’
and ‘‘�’’ denote the quantities on the upper and lower crack faces,
respectively, with the unit outward normal vector being
{ni

+} ¼ �{ni
�} ¼ {0, �1},

Dþz � Dc
¼ D�z � Dc

¼ �ō; fþ ¼ f�, (6b)

for electrically permeable condition, where Dc denotes the electric
displacement along the z-axis in the crack cavity, and

Dþz � Dc
¼ D�z � Dc

¼ �ō; Dc
¼ ��c½fþ �f��=½wþ �w��, (6c)

for electrically semi-permeable condition, where ec is the di-
electric constant of the material in the crack cavity.

3. Hybrid EDD–CSM

Based on the CSM [20–22], N1 collocation points are chosen on
the boundary G, and correspondingly N1 source points are taken
outside the domain O, as schematically shown in Fig. 1. Unknown
extended concentrated load Pki(k ¼ 1, 2, y, N1; i ¼ 1, 2, 3) is
applied at source point k, where Pk1 and Pk2 are the mechanical
loads, respectively, along the x- and z-axis, and Pk3 is the point
electric charge. The crack S is discretized into N2 elements, and
unknown EDD JukjJ(�ukj

+
�ukj

�) (k ¼ 1, 2, y, N2; j ¼ 1, 2, 3) is
uniformly distributed on each element, where J � J denotes the
discontinuity of an extended displacement across the crack. By
using the extended point force fundamental solutions given in
Appendix A, the extended Crouch fundamental solutions given in
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Fig. 1. Source points and collocation points on boundary of a transversely isotropic

piezoelectric medium.
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