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a b s t r a c t

For appropriate management of available groundwater, the flow behavior in the porous media has to be

analyzed. The complex problem of groundwater flow can be studied by solving the governing equations

analytically or by using numerical methods. As the analytical solutions are available only for simple

idealized cases, numerical methods such as finite difference method (FDM) and finite element method

(FEM) are generally used for field problems. Meshfree (MFree) method is an alternative numerical

approach to solve complex groundwater problems in simple manner. MFree method eliminates the

drawback of meshing and remeshing as in FDM and FEM which can translate to substantial cost and time

savings in modeling. In this paper, a model using MFree point collocation method (PCM) with multi-

quadric radial basis function (MQ-RBF) is proposed for 2D groundwater flow simulation. The accuracy of

the developed model is verified with available analytical solution in literature. The developed model is

applied initially for a hypothetical problem and further for a field problem to compute head distribution.

The PCM model results for the hypothetical problem are compared with FEM simulations while that of

field problem are compared with boundary element based model results. The PCM model results are

found to be satisfactory showing the applicability of the present approach.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Groundwater is one of the components of the hydrological cycle
through which humanity gets the supply of water for domestic,
industrial and agriculture uses. The complex problem of ground-
water flow can be studied by solving the governing equations of
groundwater flow analytically or numerically. The analytical
solutions are available only for the most simplifying conditions
where the velocities are constant, hydraulic conductivity remains
constant and source terms are simple functions. For most of the
field problems, numerical models are to be used based on numer-
ical techniques such as FDM and FEM [16]. But while using FDM or
FEM, a grid or mesh has to be formed over the domain and tedious
pre-processing has to be carried out.

Meshfree (MFree) method [11] is an alternative numerical
approach to solve complex engineering problems by simple and
accurate manner. This method is used to transform the governing
partial differential equations into a system of algebraic equations
for the whole problem domain without the use of pre-defined
mesh. MFree method uses a set of nodes scattered within the

problem domain as well as on the boundaries of the domain to
represent the problem domain and its boundaries.

Since last decade, researchers and engineers are trying to solve
groundwater problems with MFree methods. Kansa [7] used multi-
quadrics (MQ) as the spatial approximation scheme for parabolic,
hyperbolic and the elliptic Poisson’s equation and shown that MQ is
an accurate approximation scheme for interpolation and partial
derivative estimates for a variety of two-dimensional functions
over both gridded and scattered data. Lin and Atluri [10] proposed
meshless Petrov–Galerkin (MLPG) method to solve steady convec-
tion diffusion problems, in 1D and 2D and found that even for very
high Peclet number flows, the model gives very good results. Atluri
and Shen [1] showed that the MLPG method is less expensive, both
in computational costs as well as human-labor costs, compared to
FEM, or boundary element method (BEM). Li et al. [9] developed a
meshless method using collocation method with radial basis
functions for modeling groundwater contaminant transport and
concluded that the method is simple, easily applicable and
accurate. Liu [12] applied radial point collocation method (RPCM)
to solve convection diffusion 2D Burgers equation with the inter-
polation schemes in locally supported domains based on radial
basis functions and observed that the method is attractive in
solving computational fluid problems. Dehghan and Shokri [5]
proposed a numerical scheme to solve the 2D time-dependent
Schrödinger equation using collocation points and approximating
the solution using multi-quadrics (MQ) and thin plate splines (TPS)
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based radial basis function (RBF) and found that the results of
numerical experiments showed good agreement with analytical
solutions. Kee et al. [8] developed a stabilized MFree method based
on the strong formulation and local approximation using RBF and
also established a residual based error indicator and showed that
the features of the MFree strong-form method can facilitate an
easier implementation of adaptive analysis. Praveen Kumar and
Dodagoudar [14] developed a numerical model based on radial
point interpolation method (RPIM) for 2D contaminant transport
through saturated porous media and showed that the proposed
model is in good agreement with the experimental results.

In this paper, a meshfree model is developed for the simulation
of groundwater flow in unconfined aquifer. The model is based on
collocation techniques with multi-quadric radial basis function
(MQ-RBF). The developed model is verified with analytical solution
and further applied to hypothetical and field problems and
compared with FEM and BEM solutions, respectively, and found
to be satisfactory.

2. Governing equations and boundary conditions

The governing equation describing the flow in an unconfined
aquifer in two dimensions is given as [3]
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The following initial conditions are used

hðx,y,0Þ ¼ h0ðx,yÞ x,yAO ð2Þ

For the unconfined aquifer problems, the boundary conditions
used are:

hðx,y,tÞ ¼ h1ðx,y,tÞ x,yA@O1

Kh
@h

@n
¼ q2ðx,y,tÞ x,yA@O2 ð3Þ

where hðx,y,tÞ is the piezometric head (m); K is the hydraulic
conductivity (m/d); Kx, Ky are the hydraulic conductivities in x and y

directions; Sy is the specific yield; x, y are the horizontal space
variables (m); Qw is the source or sink function (�Qw¼Source,
+Qw¼Sink) (m3/d/m2); t is the time in days; d is the Dirac delta
function with the property that when x¼xi and y¼yi, d¼1 but¼0
elsewhere; O is the flow region; qO is the boundary region
(@O1 [ @O2 ¼ @O); @=@n is the normal derivative; h0ðx,yÞ is the
initial head in flow domain (m); h1ðx,y,tÞ is the known head
value of the boundary head (m); q2ðx,y,tÞ is the known inflow rate
(m3/d/m).

3. Numerical formulation

In this study, a meshfree formulation based on point collocation
method (PCM) with MQ-RBF is used to develop the flow model. The
PCM formulation for flow model is given in the following section.

For transient groundwater flow in unconfined aquifer in 2D
without pumping or recharge, Eq. (1) can be written as [3]
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By considering the aquifer to be homogeneous and isotropic,
Eq. (4) can be written as
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If K is constant, differentiating by parts gives
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In PCM, the first step is to define the trial solution ĥðx,y,tÞ as [11]

ĥðx,y,tÞ ¼
Xn

i ¼ 1

hiðtÞRiðx,yÞ ð7Þ

where n is the number of nodes considered and Ri(x, y) is the shape
function.

Here, shape function can be written as [11]
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where, x, y are the co-ordinates of the point of interest in the
support domain; xi, yi are the co-ordinates of ith node in the support
domain; Cs¼acdc. Here, ac is the shape parameter and dc is the
nodal spacing in the support domain. Its first and second derivative
with respect to x and y can be written as
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For time discretization, fully implicit finite forward difference
approximation is used as [13,16]
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where htþDt
i

n o
and ht

i
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are the nodal heads at the time ðtþDtÞ and

t, respectively.
Therefore, using Eqs. (7), (8), (9a,b) and (10a,b), Eq. (6) can be

written as
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Here, Riðx,yÞ, ð@Riðx,yÞ=@xÞ, ð@Riðx,yÞ=@yÞ, ð@2Riðx,yÞ=@x2Þ and
ð@2Riðx,yÞ=@y2Þ values are to be calculated for each support domain
and then they are incorporated in the global matrix for whole
problem domain. Further Eq. (12) can be written in the matrix
form as
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By rearranging the terms in Eq. (13), we get
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where [K1] is the global matrix of shape function, [K2] is the global
matrix of first derivative of shape functions with respect to x, [K3] is
the global matrix of second derivative of shape functions with
respect to x, [K4] is the global matrix of first derivative of shape
functions with respect to y, [K5] is the global matrix of second
derivative of shape functions with respect to y. For incorporating
the boundary conditions, the nodes lying on the boundaries should
be assigned the properties of boundary values depending on
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