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a b s t r a c t

The contribution deals with numerical simulation of natural convection in micropolar fluids, describing

flow of suspensions with rigid and underformable particles with own rotation. The micropolar fluid flow

theory is incorporated into the framework of a velocity–vorticity formulation of Navier–Stokes

equations. The governing equations are derived in differential and integral form, resulting from the

application of a boundary element method (BEM). In integral transformations, the diffusion-convection

fundamental solution for flow kinetics, including vorticity transport, heat transport and microrotation

transport, is implemented. The natural convection test case is the benchmark case of natural convection

in a square cavity, and computations are performed for Rayleigh number values up to 107. The results

show, which microrotation of particles in suspension in general decreases overall heat transfer from the

heated wall and should not therefore be neglected when computing heat and fluid flow of micropolar

fluids.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Micropolar fluids are a subclass of microfluids, introduced by
Eringen [1]. A simple microfluid is by Eringen’s definition a fluid
medium whose properties and behaviour are influenced by the
local motions of the material particles contained in each of its
volume elements. A microfluid is an isotropic viscous fluid and
possesses local inertia. Because of a complex formulation for a
general microfluid this class of fluids is divided into subclasses,
which allow a simplified description of the effects arising from
particle micromotions. As mentioned, in micropolar fluids, a
subclass of microfluids, rigid particles contained in a small volume
element can rotate about the center of the volume element, which
is described by the microrotation vector [2,3]. This local rotation
of the particles is independent of the mean fluid flow and its local
vorticity field. Lukaszewicz [4] presented in his book mathema-
tical aspects of the micropolar fluid flow theory. From this theory
it is also expected to successfully describe non-Newtonian
behaviour of certain fluids, such as liquid crystals, ferro liquids,
colloidal fluids, liquids with polymer additives, animal blood
carrying deformable particles (platelets), clouds with smoke,
suspensions, slurries and liquid crystals.

In the recent years this theory is gaining interest of a lot of
researchers. One of the reasons is progress in a micromachining

technology and in the opinion of a few scientists which say that
flows on the microscale differ from that on a macroscale,
described by the Navier–Stokes equations. Papautsky et al. [5]
described microchannel fluid flow behaviour with numerical
model based on a micropolar fluid flow theory and experimentally
verified the model. Results showed that micropolar fluid flow
theory present better agreement with an experiment, than
with the use of classical Navier–Stokes theory. Applicability of
the theory of the micropolar fluids in a microchannel also depends
on the geometrical dimension of the flow field [6].

Natural convection is a physical phenomenon, where due to
the presence of a temperature difference between body surfaces
buoyancy forces appeared. Most fluids near a hot wall will have
their density decreased, and an upward near wall motion will be
induced. Natural convection of a micropolar fluid in a rectangular
enclosure was presented in the work of Hsu and Chen [7], where
they presented a parametric study of the effect of microstructure
on the flow and heat transfer. In their study they use a cubic spline
collocation method. They showed that a heat transfer rate and
therefore also Nusselt number of a micropolar fluid is decreased
compared to the Newtonian fluid. In another work Hsu et al. [8]
investigated natural convection of micropolar fluids in an
enclosure with a single or multiple uniform heat sources, where
also different boundary conditions for microrotation were con-
sidered. In this work, the heat transfer characteristics and flow
phenomenon are presented for different values of the Rayleigh
number, tilting angle of the enclosure and various material
properties of the micropolar fluids. The results indicate that
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dependence of a microrotation term and heat transfer on a
microstructure parameter is significant. A similar work was also
published by Aydin and Pop [9], where they presented flow of
different Rayleigh and Prandtl numbers. In all studies the results
are compared with benchmark results of a Newtonian fluid from
Davies [10].

Among different approximation methods for solving problems
of fluid flow the boundary element method (BEM) is a relatively
new method with some interesting features, described in
Refs. [11–13]. Here, we will focus on the development of BEM
for velocity–vorticity formulation of Navier–Stokes equations
presented by Škerget et al. [11] and show how to incorporate
the micropolar fluid theory into the BEM framework. In the paper
von Škerget et al. [12] also presented result of natural convection
with the use of Navier–Stokes equations and BEM approximation
method.

2. Mathematical formulation

For description of compressible viscous fluid flow we use
conservation laws for mass, momentum and energy with appro-
priate rheological models and equations of state. In the case of
fluids, which behaviour can be described by micropolar fluid flow
theory Eringen [2] presented modified equation of conservation
laws for mass (1), momentum (2), microrotation (4) and in the
case of natural convection also conservation of energy (3)

qr
qt
þ ~rðr~vÞ ¼ 0 (1)

rD~v

Dt
¼ � ~rpþ ðlv þ 2mv þ kvÞ

~r~r �~v

� ðmv þ kvÞ
~r � ~r þ kv

~r � ~N þ r~f (2)

cpr
DT

Dt
¼ lDT (3)

rj
D~N

Dt
¼ ðav þ bv þ gvÞ

~r~r � ~N � gv
~r � ~r � ~N

þ kv
~r �~v� 2kv

~N þ r~l (4)

Differential operator D( � )/Dt ¼ q( � )/qt+vkq( � )/qxk represents
the Stokes material derivative. In the next step we assume that
fluid mass density r, specific isobaric heat per unit mass cp, heat
conduction l and all micropolar fluid properties as second-order
viscosity coefficient lv, dynamic viscosity mv, vortex viscosity
coefficient kv, viscosity gradient coefficients av, bv, gv and
microinertia j, are constant parameters. We also consider zero
couples~l and in case of buoyancy the Boussinesq assumption is
used. Therefore we can rewrite Eqs. (1)–(4) for the assumption
that micropolar fluid flow will be viscous, incompressible, steady
state and laminar

~r �~v ¼ 0 (5)
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~N (8)

bT presents thermal expansion factor and T0 is the representing
reference temperature.

Using vector algebra ð~r � ~r �~F ¼ ~rð~r �~FÞ � D~FÞ, considering
the mass conservation (5) and accounting for the solenoidality of
microrotation field the momentum (6) and microrotation (8)
conservation equations are further simplified to

rD~v

Dt
¼ �~rpþ ðmv þ kvÞD~vþ kv

~r � ~N þ~gbT ðT � T0Þ (9)

rj
D~N

Dt
¼ gvD~N þ kv

~r �~v� 2kv
~N (10)

To incorporate micropolar fluid flow theory into the framework
of velocity–vorticity formulation of Navier–Stokes equations and
to apply the BEM approximation method, we must first split the
dynamics of the flow into its kinematic and kinetic part. This is
done by the use of the derived vector vorticity field function ~o,
obtained as a curl of the compatibility velocity field ~o ¼ ~r �~v,
which is a solenoidal vector function by the definition
~r � ð~r �~vÞ ¼ 0. By applying the curl operator to vorticity and
using the mass conservation equation (5) for the incompressible
fluid flow we get an elliptic Poisson equation for the velocity
vector [11]

D~vþ ~r � ~o ¼ 0 (11)

or in tensor notation form

q2vi

qxjqxj
þ eijk

qok

qxj
¼ 0 (12)

Eq. (12) represents the kinematic part of the fluid flow where
for a known vorticity field, the corresponding velocity field can be
determined.

To compute the kinetic part of the flow we apply the curl
operator to the momentum conservation equation (9) and
considering that ~r � ~o ¼ 0, ~r �~v ¼ 0 and ~r � ~N ¼ 0 due to the
vorticity and microrotation definition and mass conservation
equation, it follows:

rD~o
Dt
¼ ðmv þ kvÞD~oþ ð~o � ~rÞ~v

� kv
~r~N þ bT

~r þ ð~gðT � T0ÞÞ (13)

This equation shows that the rate of change of the vorticity field
is due to viscous diffusion, vortex stretching and twisting,
microrotation diffusion and buoyancy force.

For the case of two-dimensional plane flow and accounting for
all previous assumptions the final form of equations for kinematic
and kinetic part are expressed in Cartesian tensor notation form as

q2vi
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þ eij

qo
qxj
¼ 0 (14)
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� bT

qgiðT � T0Þ

qxj
(15)
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þ kveij
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If we assume that kv ¼ 0 the equation for vorticity (15) and
microrotation (18) are uncoupled, therefore the flow is indepen-
dent of the microrotation, and the governing equations now
resume the form of the classical Navier–Stokes equations.
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