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A B S T R A C T

Partial least squares (PLS) regression is a dimension reduction method used in many areas of scientific discoveries.
However, it has been shown that the consistency property of the PLS algorithm does not extend to cases with very
large number of variables p and small number of samples n (i.e., p> > n). To overcome the issue, sparsity can be
imposed to the dimension reduction step of the PLS algorithm. This leads to a sparse version of PLS (SPLS) al-
gorithm which can achieve dimension reduction and variable selection simultaneously. Here, we present a new
SPLS method called sure-independence-screening based sparse partial least squares (SIS-SPLS) algorithm, by
incorporating both SIS method and extended Bayesian information criterion (BIC) into the PLS algorithm. The
developed SIS-SPLS method was evaluated using a number of numerical studies including simulation and real
datasets. The current results showed that the proposed SIS-SPLS method is efficient in variable selection. It offered
low mean squared prediction errors with high sensitivity and specificity. The SIS-SPLS algorithm proposed in the
current work may serve as an alternative SPLS method for the analysis of modern biological data.

1. Introduction and motivation

Partial least squares (PLS) regression was introduced by Herman
Wold in 1966 [1]. Nowadays, it has been widely used to analyze multi-
variate data with large number of variables (p) and small sample size (n)
(e.g. data generated from –omics experiments). The method models re-
lations between multivariate measurements [2] and reduces the number
of variables to a smaller number of latent variables [3]. The PLS algo-
rithm is computationally fast, and it facilitates graphical visualization
and interpretation of the original high dimensional data [4].

Despite the attractive properties of the PLS method, researchers had
reported some shortcomings of its algorithm. Notably, the standard PLS
method does not automatically lead to variable selection [5], and
therefore the interpretation of resulting PLSmodel is not straightforward.
The latent variables in the PLS consist of a combination of all original
variables, but in most cases only a small portion of the original variables
contribute significantly to the projection.

To overcome this issue, researchers had incorporated sparsity into the
PLS algorithm to produce sparse PLS (SPLS) methods, which can achieve
dimension reduction and variable selection simultaneously. For example,
a SPLS method proposed by Chun and Keles [4] imposes sparsity by using

an l1-norm penalty in the procedure of dimension reduction, leading to a
sufficient sparse model that enables simultaneous dimension reduction
and variable selection. However, the method uses a same tuning
parameter for different SPLS components, which may lead to selection of
spurious variables in the resulting model. One of the possible solutions
for this is to incorporate sure independence screening (SIS) method
proposed by Fan and Lv [6]. By using correlation learning to reduce the
dimensionality from high to a moderate scale (i.e. below sample size),
Fan and Lv showed that under somemoderate assumptions, SIS can select
a model which include all relevant variables with probability asymp-
totically tends to 1.

The aim of the current study is to integrate the SIS method into the
PLS algorithm to obtain a sparse PLS model which preserves the attrac-
tive properties of PLS as well as the asymptotic property of the SIS
method. This method was named sure-independence-screening based
sparse partial least squares (SIS-SPLS). Numerical studies were carried
out using both synthetic and real data, and the current results suggested
that the developed SIS-SPLS method is efficient and leads to sparse and
accurate models.

The rest of this paper is organized as follows. First, we review general
principles and properties of the PLS method in Section 2. The SIS-SPLS
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method and its properties are introduced in Section 3. Numerical studies
and discussions are provided in Section 4 and 5. In addition, mathe-
matical proofs of key properties of the proposed SIS-SPLS method are
given in Appendix.

2. Related works

2.1. Partial least squares

For a given dataset with n samples, q responses and p variables, let
response matrix Yn�q ¼ ðy1; y2;⋯;yqÞ and predictor matrix
Xn�p ¼ ðx1; x2;⋯; xpÞ. Without losing generality, assume that
y1; y2;⋯; yq are mean-centered, and x1; x2;⋯; xp are mean-centered and
scaled to unit variance.

In the PLS algorithm, latent components Tn�H ¼ ðt1; t2;⋯; tHÞ are
computed from successive optimization problems. In the first iteration,
the loadings on X and Y (denoted as w1; c1) satisfies both maximum
variances of t1 ¼ Xw1 and u1 ¼ Yc1, as well as correlation between t1
and u1, which can be obtained by:

argmax
w1 ;c1

h
corrðYc1;Xw1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXw1ÞvarðYc1Þ

p i
(1)

s:t: kw1k2 ¼ 1; kc1k2 ¼ 1

where the k � k2 is the l2-norm. The solution of the direction vector
(loading) w1 is the eigenvector of XTYYTX corresponding to the largest
eigenvalue λ1, i.e.

XTYYTXw1 ¼ λ1w1: (2)

then the score t1 which is the projection of X on the direction w1 can be
obtained by:

t1 ¼ Xw1: (3)

Then, ordinary least squares regression is conducted on X using t1,
and the residual of X can then be calculated with Eq. (4):

E1 ¼ X� t1pT
1 (4)

where p1 is the loading and can be expressed as p1 ¼ XT t1
kt1k2. By replacing X

with E1 and Y ¼ Y� t1qT
1 in Eq. (1), the coefficient w2 and score t2 of

second PLS component can be calculated. After h iterations, scores matrix
T with h latent components can be obtained.

For the PLS algorithm, the columns of matrix T are orthogonal to each
other. In addition, columns of matrix W are also orthogonal to each
other. If Y is univariate [7], and X and Y have the relationship
Y ¼ Xβþ ε, where the ε is a random vector of normal distribution with
the variance σ2, then the estimation of β using the PLS method can be
expressed as

bβPLS ¼ WðWTXTXWÞ�1WTXTY (5)

The proof of Eq. (5) is shown in Ref. [8].
Another desirable property of the PLS algorithm is its consistency. For

univariate Y, it has been previously shown that under some moderate

regularity conditions,
��bβPLS � β

��→0 if p=n→0 in probability, and��bβPLS � β
��>0 if p=n→k0 >0 in probability [4].

2.2. Sparse partial least squares

Previously, a sparse version of principal component analysis (SPCA)
was developed [21]. SPCA achieves sparsity by imposing l1-norm penalty
onto a surrogate of the direction vector (c) instead of the original

direction vector (w) while keeping w and c close to each other. Later in
2010, SPLS methods [4] were introduced by using the similar strategy.
The SPLS methods incorporated the penalty of surrogate direction vector
into the PLS algorithm by solving the following optimization,

min
w;c

�� κwTMwþ ð1� κÞðc�wÞTMðc�wÞ þ λ1kc1k þ λ2
��c22��� (6)

s:t: wTw ¼ 1

where w and c are the original direction vector and the surrogate di-
rection vector, respectively. In addition, κ, λ1 and λ2 are penalty factors
and M ¼ XTYYTX.

In Eq. (6), the first term is the object function of the PLS method with
a scaling factor κ, and the second term measures the difference between
the surrogate direction vector and the original direction vector. The last
two terms are the penalty on the surrogate directional vector. This
optimization problem can be efficiently solved by the algorithm
described in Ref. [4]. For univariate Y, the parameter can be chosen as
κ ¼ 1

2; λ2→∞, the solution can then be formulated as:

bc ¼
�
jZj � λ1

2

�
þ
signðZÞ (7)

where Z ¼ XTY
kXTYk and ðxÞþ ¼ maxð0; xÞ. Chun and Keles recast this soft

thresholding as

bc ¼
�
jZj � ηmax

1�j�p

��Zj

���
þ
signðZÞ (8)

where 0 � η � 1. If η ¼ 0, SPLS becomes a standard PLS method, and if
η ¼ 1, SPLS gives zeros estimation. Furthermore, a variable will have a
higher chance to be selected in the resulting model if it has a higher
correlation with Y.

3. SIS-SPLS

3.1. SIS-SPLS algorithm

For univariate Y, the value of Z in Eq. (8), i.e. Z ¼ XTY
kXTYk), is propor-

tional to the correlation between X and Y. In the proposed SIS-SPLS
method, variables with the correlation larger than ηmax

1�j�p

��Zj
�� will be

selected into the resulting model. This step is similar to the SIS procedure
proposed by Fan and Lv [6], and can be computed as follows: first,
calculate the correlation between X and Y, then sort the variables based
on the correlation, and use first d ðd< pÞ variables with largest d corre-
lation to establish a model, and the procedure will be repeated for several
times. An interesting property of SIS is that under some regularity con-
ditions, all important variables will be included in the model with
probability tend to 1. Instead of using soft thresholding as in SPLS
method shown in Eq. (8), the current work used a hard thresholding as in
the SIS method. For univariate Y, the performance of PLS algorithm
described in section 2 depends on the space spanned by the columns of
W, regardless of a scaling factor. One possible option ofw in the hth latent
variable is

wðhÞ ¼ ET
h�1Fh�1 (9)

where Eh�1; Fh�1 are residuals of h� 1 iteration and E0 ¼ X; F0 ¼ Y,
respectively. Notably, Eq. (9) also has a form of correlation of
Eh�1 and Fh�1 regardless of a scaling factor.

In the proposed algorithm, it is assumed that dh variables are added
in each SIS iteration and the index set of selected variables in h iteration
is denoted as Ah. Ah contains the variables of Ah�1 together with the
variables with first dh largest correlation of current Eh�1 with Y. In
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